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Abstract

In practice, inconsistencies between architectural docu-
mentation and the code might arise due to improper imple-
mentation of the architecture or the separate, uncontrolled
evolution of the code. Several approaches have been pro-
posed to detect inconsistencies between the architecture and
the code but these tend to be limited for capturing inconsis-
tencies that might occur at runtime. We present a runtime
verification approach for detecting inconsistencies between
the dynamic behavior of the documented architecture and
the actual runtime behavior of the system. The approach is
supported by a set of tools that implement the architecture
and the code patterns in Prolog, and automatically gener-
ate runtime monitors for detecting inconsistencies. We illus-
trate the approach and the toolset for a Crisis Management
System case study.

Keywords: Software architectures, Runtime verification,

Inconsistency detection.

1 Introduction

Software architecture [4, 22] is one of the key artifacts in

the software development lifecycle. It embodies the key de-

sign decisions, gross-level components of the system, and

interactions among these components. Hence, document-

ing software architecture is important for guiding the imple-

mentation of the system and likewise supporting software

maintenance and evolution [6]. In addition to implementing

the structure imposed by the architecture, it is important to

realize the dynamic behavior of the architecture. In prac-

tice, inconsistencies between architectural documentation

and the code might arise due to improper implementation

of the architecture or the separate, uncontrolled evolution

of the code. The latter situation has been termed as archi-

tectural drift [20, 18].

There have been numerous approaches proposed [23] to

check the consistency of architecture documentation with

respect to the implementation. Several approaches tend to

be based on static analysis of the code [2] and do not exploit

information that is collected at runtime. However, the exe-

cution scenarios, as imposed by the behavioral models of

the architecture, largely depend on the runtime interactions

of the system with users and/or other systems. As such, in-

consistencies between the architecture and the code might

only become apparent at runtime. Static analysis techniques

are also limited due to the fact that the set of execution

scenarios defined by the behavioral models is usually un-

bounded or is intractable to explore/check exhaustively.

In this paper, we propose a runtime verification ap-

proach, ConArch for detecting inconsistencies of an ar-

chitectural documentation with respect to the implemen-

tation. There have been many runtime verification tech-

niques proposed to monitor an operational system based

on formal specifications (finite state machines, regular ex-

pressions, temporal logic, etc.) [17]. However, verifica-

tion specifications are usually defined manually, based on

requirements and constraints, which are otherwise already

documented in design models. In our work, we utilize exist-

ing architectural behavior models as specifications for run-

time verification. We automatically convert call patterns in

the source code to Prolog facts. The user provides a map-

ping from the design models to the source code in the form

of Prolog rules. Our tools execute these rules and gener-

ate a specification (a state machine representation) together

with runtime monitors (monitors for executing system). We

utilize aspect-oriented development techniques [11] to in-

strument the source code and integrate our runtime moni-

tors. These monitors observe and report execution scenar-
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ios that conflict with the documented architecture design.

We have applied our approach to the Crisis Management

System (CMS) case study [15]. We have showed that our

approach is effective in detecting inconsistencies between

the architecture documentation and implementation, in par-

ticular for interacting scenarios spanning multiple layers in

a layered architecture. Furthermore, the approach is auto-

mated by a set of integrated tools, which makes its applica-

tion possible with limited manual effort.

The remainder of this paper is organized as follows. In

the following section we present the case study that is used

as a running example throughout the paper. In Section 3,

we describe our overall approach. Then, we describe each

step of the approach in detail from Section 4 to 7. In Section

8, we discuss our findings regarding the application of the

approach on the case study. We summarize related studies

in Section 9. Finally in Section 10, we provide conclusions

and discuss future work.

2 Case Study: Crisis Management System

Crisis Management System (CMS) [15] is used for coor-

dinating the crises resolutions. CMS receives reports about

crises and, based on the type of the crisis, it dispatches re-

sources (like police) to the scene. Once the report of a suc-

cessful resolution of a crisis is received, CMS de-allocates

the resources used for resolving this crisis so that they can

be used for other crises. CMS views crisis resolution pro-

cess as a state machine, whose transitions are the reports

received from the scene. At each state, CMS executes cer-

tain actions that would resolve the crisis or generate more

reports. Depending on the type of the crisis, the executed

actions differ. These actions are defined in programmable

crisis managers called “Resolution Strategy Components”.

Figure 1 presents the architecture design of CMS, which

includes two of such resolution strategy components Traffi-
cAccidentResolutionStrategy and FireResolutionStrategy;
in principle, there can be many such resolution strategy

components.

CMS can be controlled from multiple sources called

Clients. For example, the component Crisis Control Cen-
ter represents the user interface running at the headquar-

ters. The connector ResolutionStrategyControlInterface is

the gateway between the clients and the resolution strategy

components. It collects the reports from the clients and di-

rects them to the appropriate resolution strategy component.

It also sends notifications from the resolution strategy com-

ponent to the appropriate clients.

The resolution strategy components are linked to

the connector ResolutionStrategyControlInterface through
ports dedicated for carrying different types of reports. For

example, the port InitialCrisis caries the initial report about
the crisis. The resolution strategy components send re-

Figure 1. The Component & Connector model
of the Crisis Management System

source (de)allocation requests to the connector ResourceAl-
locationMethod. This connector queries the component

ResourceManager to find the resources according to cer-

tain allocation strategies, such as first-come-first-serve or

nearest-resource (i.e., resources closest to the scene). After

finding the resources, ResourceAllocationMethod allocates

them and notifies the resource resolution strategy compo-

nent about the successful allocation.

In the design, the behavior of resolution strategy com-

ponents in CMS is constrained by a state-machine; the

resolution strategy components should react according to

the state of the crisis and only respond to the reports that

move the crisis resolution to the next state. An example

of the state constraints is presented in Figure 2, depicting

the actions executed by the component TrafficAccidentRes-
olutionStrategy when it receives a message from the port

ResRequest. Messages from this port are sent after the ini-

tial information about the crisis is received to dispatch the

resources.

From the figure, we can see that the component Traffi-
cAccidentResolutionStrategy can respond to this message

in two ways: if a previous request to allocate resources has

failed, the scenario sends a failure message from the port

ReqFailed. If, on the other hand, the scenario has the initial
report (and this is the first request to allocate resources), the

scenario sends a message about the desired resources to the

connector ResourceAllocationStrategy. Finally, depending
on the availability of resources, the component TrafficAc-
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Figure 2. Behavioral model showing the ac-
tions executed by the component TrafficAcci-
dentResolutionStrategy

cidentResolutionStrategy can respond with a ReqFailed or

ReqSuccess message.

As can be seen from this example, the state checks are

crucial in efficient allocation of resources and flawless op-

eration of the crisis resolution process. Every resolution

strategy component should apply these checks and reply

with appropriate messages to ensure correct operation of

CMS. Therefore, architects need to verify that behavioral

models, like the one in Figure 2, are correctly implemented.

Also, evolution of the code should not hamper such design

constraints after implementation. However, CMS might

have many resolution strategy components such that checks

cannot be realized manually by reviewing the source code.

Moreover, behavioral models must be checked in the con-

text of relevant execution scenarios of the system, which is

highly dependent on user intervention in reactive systems

such as CMS. Thus, automated verification at runtime is

needed to assure the correct implementation of such behav-

ioral models. In this paper, we present the ConArch ap-

proach that uses runtime verification to verify the consis-

tency between behavioral models and the implementation.

3 Overview of ConArch

In runtime verification (RV), information about the exe-

cuting software is extracted and verified against user spec-

ified constraints [17]. This information, usually, contains

the sequence of calls executed by the software system at

runtime. The constraints, on the hand, defined as desired or-

ders of these calls specified using a formalism such as tem-

poral logic. One of the issues with RV approaches is that

the user has to re-specify the constraints that are otherwise

specified in design models. With the ConArch approach,

we provide a process for utilizing architectural behavioral

scenario models as specifications for RV.

ConArch approach consists of activities that are carried

out in three phases as shown in Figure 3. The activities at

the first phase are carried out during the architecting phase.

Here, the software architect models the component & con-

nector (C&C) [6] diagrams describing the structure of the

software system. In addition to this, the architect, with other

stakeholders, defines execution scenarios depicting impor-

tant behaviors of the software system. The defined scenar-

ios are expressed with a scenario specification language (ex-

plained in Section 4). The semantics of this language is

similar to that of UML sequence diagrams. With the given

scenario and the C&C models, ConArch toolset generates

the specification to be verified at runtime and the signatures

of Prolog rules for each interaction in the given scenario.

Since the architectural models (C&C and behavioral sce-

nario models) are at a higher level of abstraction than the

source code, the elements of these models (components,

connectors, ports, and etc.) might not exist in the source

code as they are specified. Therefore, we need to map the

elements from the architecture models to the implementa-

tion. In ConArch, mapping is a semi-automated process:

the tools generate the required programming interface (API)

and the user implements the mapping using this API. In the

first phase, signatures are generated for all the architectural

elements that need to be mapped to the source code.

The activities of the second phase are carried out dur-

ing the implementation. We implemented this phase of

ConArch for source files written in Java and C++. In this

phase, first the source code of the software system is placed

into the call graph extractor tool of ConArch. This tool

parses the source code, extracts the call graph and saves the

call graph as a set of Prolog facts. These Prolog facts form

the API that is used for implementing the mapping. Using

these facts the software engineers implement the bodies of

the rules whose signatures are generated from the behav-

ioral scenario. In this way, the mapping from the architec-

ture to the source code is established: querying for these

rules would return the set of calls to which each interaction

in the scenario maps.

Once the mapping is established, the activities in the

third phase are carried out. Here, first ConArch generates

the instrumentation aspects (in AspectJ and AspectC++ lan-

guages) that will be used for monitoring the execution of

the software system. These aspects intercept the calls that

map to the interactions of the behavioral scenario and notify

runtime verifier of ConArch. Using the mapping, ConArch
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Figure 3. The Overall Approach

also generates the scenario specification. This is the formal

specification that is used for verifying the execution. At run-

time, ConArch verifier listens to the notifications from the

instrumentation aspects and verifies that these are occurring

in the order as they are specified in the behavioral scenario.

4 Modeling Behavioral Scenarios

We use Eclipse ArchStudio environment, based on the

xADL language [9], for modeling the C&C diagrams.

These diagrams document the runtime structure of the sys-

tem. However, we also need to document the runtime be-

havior of the system in the form of execution scenarios.

Such a scenario is depicted in Figure 2 with a UML se-

quence diagram. For our purposes, the documentation of

execution scenarios should be i) formal, ii) aligned with

the structural (C&C) diagrams, iii) editable within the in-

tegrated tool environment, and iv) comprising all the con-

cepts necessary for runtime verification. To fulfill these

goals, we have designed a domain-specific language, and

utilized TCS (Textual Concrete Syntax) [14] for defining a

concrete syntax to attain the necessary and just enough ex-

pressiveness. Based on this language, execution scenarios

can be defined in alignment with the C&C diagrams, they

can be edited with specialized editors as part of the Eclipse

environment and resulting models can also be converted to

Eclipse EMF [8] models. In the following, we describe the

Figure 4. An Example Execution Scenario

concrete syntax and semantics of this language.

An execution scenario is a sequence of interactions,

each of which is defined as messages exchanged among

ports of components in the C&C diagram. Interactions

can be either synchronous (by default) or asynchronous

(annotated with the async keyword). In addition, we have

included the following concepts that define the control flow

of interactions.

Alternative frame is a set of two sequences of inter-

actions that constitute alternatives to each other. Depending

on the system state, either of the two sequences is included

in the execution scenario (analogous to if-then-else state-

ment).

Optional frame is a sequence of interactions that can be

included or excluded as a whole, depending on the system

state (analogous to if statement).

Return interaction is a special type of interaction that

represents the callback of a synchronous interaction.

Figure 4 shows a snippet from an execution scenario,

corresponding to the upper part of Figure 2. Hereby, an

alternative frame is defined for the ResRequest port of

component TrafficAccidentResolutionStrategy. One of the
alternative sequence of interactions become active in this

frame based on a state of the system (i.e., whether the res-

olution strategy has already failed or not) as specified in

brackets (requestAlreadyFailed or hasInitialReport). The

very first interaction of the execution scenario is annotated

with the initial keyword.

Once behavioral scenarios are modeled, they are pro-

vided to ConArch, which converts these models to a behav-

ioral execution automaton as described in the next section.
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Figure 5. An excerpt from behavioral automa-
ton generated from the scenario in Figure 2

5 The Behavioral Execution Automaton

Given a behavioral scenario, ConArch traces the sce-

nario and generates a deterministic automaton, which we

refer to as Behavioral Execution Automaton (BEA). BEA

forms the basis specification that will be used by ConArch
runtime observer to verify whether the executing system

follows the behavioral scenario. Each transition in BEA

represents an interaction in the scenario. Below we describe

trace semantics used for generating the BEA from the be-

havioral scenario:

• ConArch adds a start state S0 and sets the current state

(Scurrent) to S0. Then, it traces the first interaction in the

scenario. In the scenario depicted in Figure 2, the first

interaction is ResRequest(). An excerpt from the BEA

for this scenario is depicted in Figure 5. Here, we can

see that the outgoing transition from the start state (S0)

corresponds to the first interaction of the scenario.

• For an interaction i < F.p1, T.p2 > (P ), where P
is the list of parameters passed to the interaction, F is

the component or the connector the interaction originates

from, T is the receiver of the interaction, p1 and p2
are the corresponding ports, ConArch adds the transi-

tion i < F.p1, T.p2 > (P ) from state Scurrent. It also

adds a state Si as the destination of the newly added tran-

sition and sets the current state to Si. Then, ConArch
starts tracing the first interaction that is executed by T in

response to i < F.p1, T.p2 > (P ). In Figure 5, the inter-
action ResRequest() is received by the component Traf-
ficAccidentResolutionStrategy, which executes an alter-

native frame in response to this interaction. In Figure 5,

the interaction ResRequest() is represented with the tran-
sition from state S0 to S1. The alternative frame that is

executed by TrafficAccidentResolutionStrategy, is rep-
resented with the two outgoing transitions from state S1.

• If the traced interaction is an alternative frame with n
operands, ConArch adds n outgoing transitions from the

current state. Each of these transitions corresponds to the

first interaction of each operand. Then, ConArch traces

each of these interactions. For example, the transitions

between states S1-S2 and S1-S5 in Figure 5, corresponds

the first interactions of operands of the first alternative

frame in Figure 2.

• For a return interaction r < F.p1, T.p2 > (R), where
R is the returned value, ConArch adds a new state Sr,

a transition r < F.p1, T.p2 > (R) from Scurrent to Sr,

and sets the current state to Sr. ConArch, then traces the
first interaction executed by the component F after the

return interaction. In Figure 2, after executing the asyn-

chronous interaction ResAllocateResources(), the com-

ponent TrafficAccidentResolutionStrategy returns. This

return interaction is shown with the transition between

states S2-S4.

• An asynchronous interaction a < F.p1, T.p2 > (P ) is
converted to two consecutive transitions. The first transi-

tion designates the originator of the asynchronous inter-

action and the second one designates the receiver of the

interaction. After adding the first transition and the corre-

sponding state Sa1, ConArch traces the interactions ex-

ecuted by the component F following the asynchronous

interaction a. When all these interactions in component

F are traced, ConArch returns to the state Sa1, adds

the second transition and traces the actions executed by

component T in response to the asynchronous interaction

a. The asynchronous interaction ResFailed() in Figure 2

is represented with the transitions between states S1-S2

and S2-S3. The first transition states that the component

TrafficAccidentResolutionStrategy has initiated an asyn-
chronous interaction to the connector ResolutionStrate-
gyControlInterface. Note the two outgoing transitions

from state S2. The transition to state S4 represents the

return action the component TrafficAccidentResolution-
Strategy executes after initiating the asynchronous inter-

action. The transition to state S3, on the other hand, states

that connector ResolutionStrategyControlInterface has

received the asynchronous interaction ResFailed(). The

state S3 has no outgoing transitions, because the scenario

in Figure 2 does not show any interactions executed by

the connector ResolutionStrategyControlInterface in re-
sponse to the interaction ResFailed().

Note that ConArch marks the states without any outgoing

transitions as accept states.
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5.1 Generating the Signatures of the Pro-
log Rules for Mapping

An interaction can be implemented in many ways and,

as such, manually implementing a monitor for each type of

interaction is not practical. ConArch abstracts away the

details of how an interaction is implemented and focuses on

the activation of the ports during an interaction. Interactions

are verified by observing three events. First, the port send-

ing the message should be activated. Then, the port receiv-

ing the message should be activated. Finally, in between

these two events, the other ports should not be activated. At

runtime, we can only observe the executions of the methods

and the calls; hence, we need to represent these three events

in terms of the execution of a set of methods and/or calls, or

a sequence of calls. This is realized by mapping the ports to

methods and calls in the implementation.

In ConArch, we use Prolog as it has been proven suc-

cessful in providing a similar mapping [19]. The mapping

is realized in two steps, where the first step is executed

when BEA is generated and the second step is executed

once the implementation is ready (detailed in next section).

The first step simply generates the signatures of the Prolog

rules where the user implements the query for the mapping.

These signatures are as follows:

port(nameport, namecomponent, List): generated

for the ports of the interactions; in these rules, the user

implements the mapping for the port of a component.

condition(condition, MappedAttributesFrom,
MappedAttributesTo): generated for each distinct

condition of the interactions. Here, the user implements the

Prolog rule that evaluates the condition (detailed in next

section)

6 Mapping Implementation to the Architec-
tural Elements

In the second step of mapping (activity six of Figure 3),

the user implements the mapping from ports to calls/meth-

ods using facts representing the class structure and the call

graph of the software system. This section details how

ConArch converts the class structure and the call graph to

Prolog facts and, then, presents how the mapping is imple-

mented.

6.1 Representing source code elements as
Prolog facts

We implemented a plug-in for Eclipse and a plug-in for

the GNU C/C++ compiler to extract the class structure and

the call graph from source files implemented in Java and

C++. These tools traverse the syntax tree to recognize the

class/method declarations and the call statements. For each

of these declarations and statements, we designed a corre-

sponding predicate. Hence, when the plug-ins recognize a

class/method declaration or a call statement in the syntax

tree, they simply export the fact by initializing the predicate

corresponding to the recognized statement. In the follow-

ing, we list the predicates that correspond to the declarations

and statements needed for the mapping.

• class(id, name): Represents a class declaration. id is a

unique integer identifier assigned by the plug-ins. name
represents the name of the class.

• superType(idsubtype, idsuperType): Represents the inher-
itance between two classes.

• primitiveType(id, name) and structureType(-
id, name): Represents primitive types, such as int, and
structure types.

• pointerType(id, idtype) and referenceType(-
id, idtype): Represents a pointer or a reference to the type
designated with idtype. Here, idtype can be the identifier

of a primitive, class, or structure type.

• method(id, idclass, name): A method of the class

designated with idclass. For example, the fact

"method(3,1,’dispatch’).", represents the method dis-
patch() of the class TrafficAccidentResolutionStrategy.

• parameter(idmethod, idtype): A parameter of a method

designated with idmethod. Here, idtype can be the identi-
fier of a pointer, a reference, a structure, a primitive or a

class type.

• varDecl(id, idowner, idtype, name): Represents a vari-

able declaration. If the owner type is the identifier of a

class, then it represents an attribute. On the other hand, if

the owner is the identifier of a method, then it represents

a variable declared in a method.

• addressOf(id, idvar), referenceOf(id, idvar): The ad-

dress or the reference of a variable.

• callState(id, idto, idfrom): A call to a method. For ex-

ample, the fact "callState(4,3,1)" represents a call to the

method dispatch() of the class TrafficAccidentResolu-
tionStrategy.

• argument(idcall, idpass): Represents an argument of a

call. idpass can be the identifier of a variable declaration

or an address/a reference of operator.

6.2 Mapping ports to source code

To generate the instrumentation aspects, ConArch
queries the predicate port(<nameport>, <namecompo-
nent>, List) for each port it encounters in the BEA model.
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Figure 6. An excerpt from the design of CMS

In the third parameter, ConArch passes an empty list

and expects the user implemented mapping to unify this

parameter with the list of methods or calls a port maps to.

To clarify the mapping, recall the interaction ResRequest
in Figure 2. This interaction is carried out between two

ports: ResolutionStrategyControlInterface.ResRequest
and TrafficAccidentResolutionStrategy.ResRquest. There-
fore, we need to implement two Prolog rules to verify this

interaction.

Assume that each resolution strategy is implemented

by a class and there is a class ReportHandler, that

defines methods for receiving different types of re-

ports as shown in Figure 6. Each resolution strategy

class has an instance of the class ReportHandler,
and they use the method registerHandler()
to register a handler to the report. The class

ResolutionStrategyControlInterface con-

tains each instance of the class ReportHandler that

belongs to a resolution strategy. Hence, once a report

from the clients is received, the class Resolution-
StrategyControlInterface identifies the resolu-

tion strategy to notify and retrieves the instance of the class

ReportHandler belonging to this resolution strategy.

Then, it calls the receive method corresponding to the

report. In turn, the instance of the class ReportHandler
logs the details of the report and calls the handler registered

by the resolution strategy.

According to this design, the class Resolution-
StrategyControlInterface needs to call the

method receiveResourceAllocationReport()
to pass the report about resource allocation requests to the

resolution strategies. Hence, the port ResolutionStrategy-
ControlInterface.ResRequest() maps to this call. We can

implement this mapping as follows:

port(’ResRequest’,’ResolutionStrategyControlInterface’,List):-

findall(CallId, call(CallId), IdList),

mapCalls(’ResRequest’,’ResolutionStrategyControlInterface’,

IdList, List).

call(CallId):-class(Cid,’ ResolutionStrategyControlInterface’),

method(Mid,Cid,_), class(Rid, ’Report-Handler’),

method(ToMId, Rid, ’receiveResource-AllocationRequest’),

callState(CallId, toMId, Mid).

Here, the Prolog rule call returns the iden-

tifier of a call statement made to the method

ReportHandler.receiveResourceAllocation-
Request() from a method of the class Resolution-
StrategycontrolInterface. The predicate findall,
used in the rule port, simply builds a list containing all an-

swers to the rule call. By using this predicate, we are able to
get all the calls made to the method receiveResource-
AllocationRequest() from the methods of the class

ResolutionStrategyControlInterface.
Note the last predicate mapCalls that gets the list of the

identifiers of the call statements and returns another list.

This list contains instances of the class MappedElement,
which is a part of the ConArch library, and it contains prop-

erties needed to generate the aspects. mapCalls is a foreign
predicate; we implemented its body in Java. Its purpose

is to create instances of the class MappedElement from

identifiers. When Prolog evaluation reaches this predicate

the interpreter calls this method, which in turn creates in-

stances of the class MappedElement for each identifier in

the list and returns these instances. We also implemented

the foreign predicates mapMethods, mapSequence for the

same purpose to be used with mapping to methods and call

sequences, respectively.

Conditions are defined as logical expressions on the

attributes of the classes, whose methods map to the

ports. The user can express the logical expression on

the Prolog rule associated with the condition. We pro-

vide foreign predicates that allow the user to access the

values of the attributes of these classes. For example,

the port TrafficAccidentResolutionStrategy.ResFailed()
maps to a call initiated from the methods of the class

TrafficAccidentResolutionStrategy to the

method ReportHandler.sendFailed(). This

call should be executed when the condition resAlready-
Failed is true. In our implementation of the CMS,

we followed the state design pattern to distinguish the

runtime states of resolution strategies. Hence, the con-

dition resAlreadyFailed becomes true when the attribute

TrafficAccidentResolutionStrategy.state
holds an instance of the class ResolutionFailed. In

ConArch, this is expressed as a Prolog rule as follows:
condition(’resAlreadyFailed’,AttributesFrom, AttributesTo):-

isInstance(AttrbitesFrom, ’TrafficAccidentResolutionStrat-

egy’),

getInstanceValue( AttributesFrom,’state’,Value),

isInstance(Value,ResolutionFailed).

7 The Execution Observation Automaton
and Runtime Monitoring Aspects

As discussed in Section 5.1, ConArch verifies an interac-

tion with three events: i) the activation of the sending port,
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ii) the activation of the receiving port, and iii) the absence

of other interactions in between these two activations (all

other ports should be inactive). However, the BEA model

does not include these events, as it is focused on specify-

ing the sequences of the interactions. As such, ConArch

executes one more conversion that enriches the BEA with

these events. We term this enriched automaton the Execu-
tion Observation Automaton (EOA).

BEA-to-EOA conversion is a straightforward process, in

which each transition is converted to consecutive transitions

as shown in Figure 7. For example, here we can see that

a transition for a synchronous interaction is converted to

two transitions: one triggered when the sender port is active

and the other one triggered when the receiver port becomes

active. If the transition in BEA has a condition, then the

same condition is attached to all corresponding transitions

in EOA. The accept state at the end of an interaction in BEA

is represented also with an accept state at the end of the last

transition corresponding to the interaction.

Note that the wildcard (∗) transitions are used to en-

sure that in between two activations, no other port is ac-

tive. Assume that the set TSi contains all outgoing transi-

tions for the state Si; then, the wildcard transition for this

state matches any observation Σ − TSi, where Σ is the set

containing all outgoing transitions in EOA. As can be seen

from Figure 7, every EOA state corresponding to an end of

an interaction has a wildcard transition. However, the inter-

mediatory states do not have such transitions. This means,

that when the transition corresponding to the activation of

the sender port is observed, then the next observation should

be the activation of the sender port. If the activation of an-

other port is observed, then the execution does not conform

to the behavioral model. When the activation of the sender

is observed, then we successfully observed an interaction

and we stay on the current state until the activation of the

sender port for the next interaction is observed.

Another useful feature of the wildcard transitions is that

they allow ConArch to abstract from execution details.

There can be many different interactions between two con-

secutive interactions of a behavioral model, and such activa-

tions without the wildcard transitions would lead to a failure

in the verification. With the wildcard transitions, these acti-

vations do not lead to a failure and allow ConArch to verify

only the sequence of interactions specified in the scenario.

After EOA is generated, ConArch generates the runtime

instrumentation aspects using the mappings provided by the

user. Here, an aspect with one pointcut, one before, and one
after advice is generated for each mapping. The before and

after advices defined on each pointcut send the messages

ACTIVE( mappedport ) and RETURN( mappedport ) to
the runtime verifier, respectively. The pointcut specifica-

tion differs according to the mapping. For a mapping to a

method, the pointcut captures the execution of the mapped

Figure 7. The transitions of the BEA and their
EOA equivalents

method and the receiver class. For a mapping to a call,

the pointcut captures the mapped call and the class mak-

ing the call. For a mapping to a call sequence, the pointcuts

for each call is composed with logical OR. The advice
code keeps an internal state and only notifies runtime veri-

fier when the sequence is completed.

In the previous section, example mappings form the port

ResolutionStrategyControlInterface.ResRequest() are pre-
sented. Figure 8 shows the aspect generated from one

of these mappings. Here, the pointcut specification at

line 2-7 shows that the aspect captures the call within the

method ResolutionStrategycontrolInterface.CrisisStart();
hence, this aspect is generated for the mapping to the

call from ResolutionStrategycontrolInterface.CrisisStart()
to ReportHandler.receiveResourceAllocationRequest().

At line 11 in Figure 8, we can see that the before ad-

vice sends the message about the activation of the port with

a ThreadId. We implemented the ConArch runtime veri-

fier as a server process that receives the message from as-

pects and evaluates state transitions for each thread/process.

The ThreadId is used to identify the current state for a pro-

cess/thread. If the transitions require a condition to be eval-

uated, the server sends the monitored process the name of

the condition to evaluate. Then, the monitor aspect asks the

Prolog interpreter to evaluate the condition and sends the

results of the evaluation to the verifier process. To facil-

itate interactions among different processes, ConArch al-

lows the coexistence of different ThreadId’s for transitions
corresponding to interactions within a certain time frame. It

is also possible to extendConArchwith aspects that capture

the calls to the socket library and communicate ThreadId’s
among processes.
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Figure 8. A Snippet from the the aspect gen-
erated for a mapping of the port Resolution-
StrategyControlInterface.ResRequest()

When the evaluation for a process/thread reaches to an

accept state, ConArch deletes the corresponding ThreadId.
On the other hand, if the current state for a process/thread

does not change for a certain period ( in a state with wild-

card transition) or a trigger does not match to any of the

outgoing transitions (in a state without a wildcard transi-

tion), then the verification fails and ConArch logs the state

together with the violating triggers.

8 Application of ConArch

In order to test ConArch we implemented a basic ver-

sion of CMS in Java following the design shown in Figure 6.

We also implemented two clients that send crisis update re-

ports to CMS at random time intervals.

According to our mappings, ConArch generated 16 as-

pects. These aspects mainly intercepted the calls from/to

the class ReportHandler as many of the ports in the sce-

nario map to the methods of this class. After letting the

setup execute for an hour, we collected the evaluation re-

sults. The evaluation showed that at runtime one violation

of the behavioral model has occurred. Following the last

correct state and the incorrect event, we identified that a

synchronization error lead the class ReportHandler to re-

turn a success message to a failed allocation message. This

result shows that ConArch is successful in capturing incon-

sistencies between the execution of the software system and

its behavioral models.

Execution analysis has showed that ConArch introduced

a runtime performance overhead on average by 5 seconds.

Obviously, much of this time was due to the evaluation of

the conditions (client/server communication was negligible

as they both executed in the same computer). All 4 condi-

tions of the behavioral model had a similar implementation

to the one presented in Section 6. As such, they were not

very complicated. When the conditions are complicated, the

performance overhead can be an issue. One way to increase

the efficiency of ConArch is to use dynamic rule assertion

rather than foreign predicates. In this setup, the instrumen-

tation aspects would be programmed to export the runtime

state of the software system as Prolog facts. For example,

an aspect can be implemented to intercept a mapped call

and export the facts isinstance for each attribute of the ob-

jects at the both end of the calls. As a future work, we plan

to implement this mechanism.

9 Related Work

There exists several approaches to prevent inconsisten-

cies between an architecture design and its implementation

[3, 2]. However, these are mostly based on static analysis

only. In [21], static and dynamic analysis are combined.

Static analysis is used for deriving the dependencies and

interactions among the software modules. Dynamic anal-

ysis is used for determining the interactions that are actu-

ally active and that frequently occur at runtime. This ap-

proach focuses on structural constraints regarding standard-

ized architectural models (e.g., design patterns, architec-

tural styles), and not on behavioral constraints. The neces-

sary conditions for conformance and the conditions for vio-

lation are specified as Prolog clauses. These prolog clauses

are manually defined and parameterized for reuse in differ-

ent projects. In our approach, ConArch automatically gen-

erates Prolog rules and facts. Only the mapping between the

design models and the source code should be defined man-

ually for which ConArch generates Prolog templates. In

[12] architectural views are constructed based on runtime

observations on an executing system. Inconsistencies with

respect to the existing documentation are also highlighted

during the reconstruction process. However, this work fo-

cuses on the runtime structure of the architecture and not

on the runtime behavior. In [5] the inconsistencies between

method flows modeled with sequence diagrams and the im-

plementation are captured. This approach, however, focuses

on object-oriented execution details that are not part of ar-

chitectural models.

There have been dynamic analysis techniques introduced

[13, 16] for analyzing the runtime behavior of a system to

support architecture reconstruction [1]. These techniques

are mainly employed for the purpose of reverse engineer-

ing. In [19], the data obtained from the dynamic analysis is

represented as Prolog facts. This facilitates query-support to

abstract away the details before the visualization of the ar-

chitecture. Abstraction rules are defined as Prolog proposi-

tions applied on the raw data. Many other dynamic analysis

and architecture reconstruction techniques are surveyed in

[7]. These are also introduced for reverse engineering, but

not for verifying the consistency of an architecture docu-
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mentation at runtime. Reverse engineered behavioral mod-

els could be checked (offline) with respect to the existing

documentation. However, there is a lack of formalized map-

ping between the generated models and existing documents.

As such, these approaches do not facilitate automated con-

sistency checking.

In Section 4, we have introduced a domain-specific lan-

guage for modeling behavioral scenarios. In this language,

we have employed conditionals that are defined based on

system states. These conditionals determine the flow of

events among a set of alternative execution sequences.

SysML [10] also includes such conditionals. However, in

our case, these conditionals are much less detailed/complex

and they only focus on interaction sequences. In this work,

our goal was not to introduce a comprehensive system mod-

eling language, but to define a language that has the neces-

sary and just enough expressiveness for our purposes, i.e.,

runtime verification.

10 Conclusion

In this paper we have proposed a runtime verification

approach, ConArch, for detecting inconsistencies between

the architecture and the code. Inconsistencies between the

architecture and the code can occur due to improper im-

plementation of the code or the separate evolution of the

code. We have focused on the behavioral models of the ar-

chitecture and provided mechanisms to ensure that the code

follows the interaction constraints and dynamic flow as de-

fined in these behavioral models. The approach is largely

automated by an integrated toolset that implements the ar-

chitecture and the code patterns in Prolog and supports the

automatic generation of runtime monitors for detecting in-

consistencies. The application of the approach on a case

study showed that ConArch is successful in capturing in-

consistencies between the execution of the software system

and its behavioral models. In our future work we will en-

hance our toolset and apply the approach in the context of a

large industrial case study.
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