Self-assembled peptide nanofiber templated ALD growth of TiO2 and ZnO semiconductor nanonetworks

buir.contributor.authorBıyıklı, Necmi
buir.contributor.authorOkyay, Ali Kemal
buir.contributor.authorGüler, Mustafa O.
dc.citation.epage3244en_US
dc.citation.issueNumber12en_US
dc.citation.spage3238en_US
dc.citation.volumeNumber213en_US
dc.contributor.authorGarifullin, R.en_US
dc.contributor.authorEren, H.en_US
dc.contributor.authorUlusoy, T. G.en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorBıyıklı, Necmien_US
dc.contributor.authorGüler, Mustafa O.en_US
dc.date.accessioned2018-04-12T10:58:09Z
dc.date.available2018-04-12T10:58:09Z
dc.date.issued2016en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractHere peptide amphiphile (PA) nanofiber network is exploited as a three‐dimensional soft template to construct anatase TiO2 and wurtzite ZnO nanonetworks. Atomic layer deposition (ALD) technique is used to coat the organic nanonetwork template with TiO2and ZnO. ALD method enables uniform and conformal coatings with precisely controlled TiO2 and ZnO thickness. The resulting semiconducting metal oxide nanonetworks are utilized as anodic materials in dye‐sensitized solar cells. Effect of metal oxide layer thickness on device performance is studied. The devices based on thin TiO2 coatings (<10 nm) demonstrate considerable dependence on material thickness, whereas thicker (>17 nm) ZnO‐based devices do not show an explicit correlation.en_US
dc.identifier.doi10.1002/pssa.201600511en_US
dc.identifier.eissn1862-6319
dc.identifier.issn1862-6300
dc.identifier.urihttp://hdl.handle.net/11693/36947
dc.language.isoEnglishen_US
dc.publisherWiley - V C H Verlag GmbH & Co. KGaAen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/pssa.201600511en_US
dc.source.titlePhysica Status Solidi. A : Applications and Materials Scienceen_US
dc.subjectAtomic layer depositionen_US
dc.subjectMetal oxide semiconductorsen_US
dc.subjectNanofibersen_US
dc.subjectNanomaterialsen_US
dc.subjectPeptidesen_US
dc.subjectSelf-assemblyen_US
dc.subjectAnodic oxidationen_US
dc.subjectCoatingsen_US
dc.subjectDepositionen_US
dc.subjectDye-sensitized solar cellsen_US
dc.subjectMetallic compoundsen_US
dc.subjectMetalsen_US
dc.subjectMOS devicesen_US
dc.subjectNanofibersen_US
dc.subjectNanostructured materialsen_US
dc.subjectNanotechnologyen_US
dc.subjectOxide semiconductorsen_US
dc.subjectPeptidesen_US
dc.subjectSelf assemblyen_US
dc.subjectTitanium dioxideen_US
dc.subjectZinc oxideen_US
dc.subjectZinc sulfideen_US
dc.subjectConformal coatingsen_US
dc.subjectDevice performanceen_US
dc.subjectMaterial thicknessen_US
dc.subjectMetal oxide layersen_US
dc.subjectMetal oxide semiconductoren_US
dc.subjectPeptide amphiphilesen_US
dc.subjectSelf-assembled peptidesen_US
dc.subjectSemi-conducting metal oxidesen_US
dc.subjectAtomic layer depositionen_US
dc.titleSelf-assembled peptide nanofiber templated ALD growth of TiO2 and ZnO semiconductor nanonetworksen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Self-assembled peptide nanofiber templated ALD growth of TiO2 and ZnO semiconductor nanonetworks.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version