Dynamical screening effects in hot-electron scattering from electron-hole plasma and LO-phonon modes in quantum wires

Date
1996
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Solid State Communications
Print ISSN
0038-1098
Electronic ISSN
Publisher
Elsevier
Volume
99
Issue
7
Pages
509 - 512
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We present a fully dynamical and finite temperature study of the hot-electron momentum relaxation rate and the power loss in a coupled system of electron-hole plasma and bulk LO-phonons in a quantum wire structure. Interactions of the scattered electron with neutral plasma components and phonons are treated on an equal footing within the random-phase approximation. Coupled mode effects substantially change the transport properties of the system at low temperatures. Particularly, the "plasmon-like" and "LO-phonon-like" excitations yield comparable rates which, as a consequence of the singular nature of the ID density of states, can be large at the threshold. This is in contrast to room temperature results where only the LO-phonon mode contributes significantly to the rate. The density and temperature dependence of the power loss reveals that dynamical screening effects are important, and energy-momentum conservation cannot be satisfied above a certain density for a given initial energy.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)