A gPC-based approach to uncertain transonic aerodynamics
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Usage Stats
views
downloads
Series
Abstract
The present paper focus on the stochastic response of a two-dimensional transonic airfoil to parametric uncertainties. Both the freestream Mach number and the angle of attack are considered as random parameters and the generalized Polynomial Chaos (gPC) theory is coupled with standard deterministic numerical simulations through a spectral collocation projection methodology. The results allow for a better understanding of the flow sensitivity to such uncertainties and underline the coupling process between the stochastic parameters. Two kinds of non-linearities are critical with respect to the skin-friction uncertainties: on one hand, the leeward shock movement characteristic of the supercritical profile and on the other hand, the boundary-layer separation on the aft part of the airfoil downstream the shock. The sensitivity analysis, thanks to the Sobol' decomposition, shows that a strong non-linear coupling exists between the uncertain parameters. Comparisons with the one-dimensional cases demonstrate that the multi-dimensional parametric study is required to get the correct shape and magnitude of the standard deviation distributions of the flow quantities such as pressure and skin-friction. © 2009 Elsevier B.V.