Experimental verification of metamaterial loaded small patch antennas

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage1844en_US
dc.citation.issueNumber6en_US
dc.citation.spage1834en_US
dc.citation.volumeNumber32en_US
dc.contributor.authorAlici, K. B.en_US
dc.contributor.authorCaliskan, M. D.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.contributor.authorBilotti, F.en_US
dc.contributor.authorToscano, A.en_US
dc.contributor.authorVegni, L.en_US
dc.date.accessioned2015-07-28T12:02:03Z
dc.date.available2015-07-28T12:02:03Z
dc.date.issued2013en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractPurpose - Metamaterial unit cells composed of deep subwavelength resonators brought up new aspects to the antenna miniaturization problem. The paper experimentally demonstrates a metamaterial-inspired miniaturization method for circular patch antennas. In the proposed layouts, the space between the patch and the ground plane is filled with a proper metamaterial composed of either multiple split-ring or spiral resonators (SRs). The authors have manufactured two different patch antennas, achieving an electrical size of ?/3.69 and ?/8.26, respectively. The paper aims to discuss these issues. Design/methodology/ approach - The operation of such a radiative component has been predicted by using a simple theoretical formulation based on the cavity model. The experimental characterization of the antenna has been performed by using a HP8510C vector network analyzer, standard horn antennas, automated rotary stages, coaxial cables with 50 O characteristic impedance and absorbers. Before the characterization measurements we performed a full two-port calibration. Findings - Electrically small circular patch antennas loaded with single layer metamaterials experimentally demonstrated to acceptable figures of merit for applications. The proposed miniaturization technique is potentially promising for antenna applications and the results presented in the paper constitute a relevant proof for the usefulness of the metamaterial concepts in antenna miniaturization problems. Originality/value - Rigorous experimental characterization of several meta material loaded antennas and proof of principle results were provided. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.en_US
dc.identifier.doi10.1108/COMPEL-10-2012-0276en_US
dc.identifier.issn0332-1649
dc.identifier.urihttp://hdl.handle.net/11693/12580
dc.language.isoEnglishen_US
dc.publisherEmerald Group Publishing Limiteden_US
dc.relation.isversionofhttp://dx.doi.org/10.1108/COMPEL-10-2012-0276en_US
dc.source.titleCOMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineeringen_US
dc.subjectAntennaen_US
dc.subjectElectricityen_US
dc.subjectMaterialsen_US
dc.subjectMetamaterialsen_US
dc.titleExperimental verification of metamaterial loaded small patch antennasen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
69916992.pdf
Size:
282.04 KB
Format:
Adobe Portable Document Format
Description:
Full printable version