Design and characterization of a micro mechanical test device

Date
2016-08
Editor(s)
Advisor
Akay, Adnan
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Devices with micro- and nano- scale components are becoming more commonplace and demand for better quantification of the properties such as Young's modulus, stiffness, and damping of small-scale components is increasing. Since these properties can differ significantly from their bulk values, their direct measurements using a micro mechanical test device is offered in the thesis. The micro-scale test device described in this thesis consists of a platform that also includes subsystems to measure stress and strain, actuation, sample fabrication and grippers to mount the samples. A notch- exure based monolithic structure is used for the device platform to provide high-resolution precise motion. A piezoelectric actuator, a force transducer, and a vibrometer are used for actuation, force measurement and velocity measurement, respectively. Finite element analyses and experiments are carried out in order to characterize the apparatus as a micro mechanical test device. Static, time-dependent cases are analyzed and its eigenfrequencies are determined. Required calibrations and drift analysis of instruments are conducted. Force and velocity relations are obtained, and results are evaluated for linearity and repeatability. Finally, operating range of proposed device is determined for use as a micro mechanical test device.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)