Formation of quantum structures on a single nanotube by modulating hydrogen adsorption

Date
2003
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physical Review B - Condensed Matter and Materials Physics
Print ISSN
0163-1829
Electronic ISSN
Publisher
American Physical Society
Volume
68
Issue
11
Pages
1154191 - 1154196
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Using first-principles density functional calculations we showed that quantum structures can be generated on a single carbon nanotube by modulating the adsorption of hydrogen atoms. The band gap of the hydrogen-free zone of the tube widens in the adjacent hydrogen covered zone. The sudden variation of the band gap leads to band offsets at the conduction- and valence-band edges. At the end, the band gap of the whole system is modulated along the axis of the tube, which generates quantum wells or quantum dots. Specific electronic states are confined in these quantum wells. The type and radius of the nanotube and the extent and sequence of hydrogen-free and hydrogen-covered zones can provide several options to design a desired optoelectronic nanodevice.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)