Exact and approximate decoupling and noninteracting control problems

Date
1989
Editor(s)
Advisor
Özgüler, A. Bülent
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In this thesis, we consider “exact” and “approximate” versions of the disturbance decoupling problem and the noninteracting control problem for linear, time-invariant systems. In the exact versions of these problems, we obtain necessary and sufficient conditions for the existence of an internally stabilizing dynamic output feedback controller such that prespecified interactions between certain sets of inputs and certain sets of outputs are annihilated in the closed-loop system. In the approximate version of these problems we require these interactions to be quenched in the ‘Hoo sense, up to any degree of accuracy. The solvability of the noninteracting control problems are shown to be equivalent to the existence of a common solution to two linear matrix equations over a principal ideal domain. A common solution to these equations exists if and only if the equations each have a solution and a bilateral matrix equation is solvable. This yields a system theoretical interpretation for the solvability of the original noninteracting control problem.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)