Low-amplitude, force gradient imaging of Cu(100) surface using tunnel current feedback

Date
2004
Authors
Özer, H. Ö.
Norris, A.
Oral, A.
Hoffmann, P. M.
Pethica, J. B.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Nanotechnology
Print ISSN
0957-4484
Electronic ISSN
1361-6528
Publisher
Institute of Physics Publishing
Volume
15
Issue
2
Pages
S5 - S8
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

The large corrugation amplitudes in scanning tunnelling microscope (STM) images of metal surfaces have been commonly attributed to the action of forces between the tip and the sample. We have investigated the Cu(100) surface using a high-resolution non-contact atomic force microscope/scanning tunnelling microscope (nc-AFM/STM) in UHV. Force gradient and STM topography images were acquired simultaneously using constant tunnelling current feedback. Force gradient images showed atomic resolution whereas STM scans exhibited almost no contrast, corresponding to a flat tip trajectory during scans. The corrugation height in force gradient images was found to increase as the set tunnelling current was increased. Force gradient and tunnel current were directly measured as a function of separation, to determine the operating conditions during imaging. The STM operation regime is found to lie between the minimum of the stiffness curve and the start of repulsive force.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)