Amorphous to tetragonal zirconia anostructures and evolution of valence and core regions

buir.contributor.authorUyar, Tamer
buir.contributor.authorBıyıklı, Necmi
buir.contributor.orcidUyar, Tamer|0000-0002-3989-4481
dc.citation.epage23273en_US
dc.citation.issueNumber40en_US
dc.citation.spage23268en_US
dc.citation.volumeNumber119en_US
dc.contributor.authorVempati S.en_US
dc.contributor.authorKayaci-Senirmak, F.en_US
dc.contributor.authorOzgit-Akgun, C.en_US
dc.contributor.authorBıyıklı, Necmien_US
dc.contributor.authorUyar, Tameren_US
dc.date.accessioned2016-02-08T09:34:24Z
dc.date.available2016-02-08T09:34:24Z
dc.date.issued2015en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractIn this report, we study the evolution of valence band (VB) structure during a controlled amorphous to tetragonal transformation of ZrO2 core-shell nanostructures fabricated from electrospun nanofiber template (at 130, 200, and 250 °C). Shell-ZrO2 was formed with atomic layer deposition. X-ray diffraction and transmission electron microscopy are employed to unveil the transformation of amorphous to crystalline structure of ZrO2. O 1s core-level spectra indicated chemisorbed oxygen (OCh) of almost invariant fraction for the three samples. Zr 3s level suggested that the sample deposited at 130 °C has depicted a peak at relatively higher binding energy. Analyses on Zr 3d spectra indicated the presence of metallic-Zr (Zr+ζ, 0 ≤ |ζ| < 4), the fraction of which decreases with increasing template temperature. VB region is analyzed until ∼64 eV below the Fermi level (EF). The region close to EF depicted features that are dissimilar to the literature. This discrepancy is explained on the basis of the analyses from O 1s, Zr 3d, and Zr 4p levels including hybridization of orbitals from chemisorbed species. These levels were analyzed in terms of peak characteristics such as spectral position, area under the peak, etc. The results of this study would enhance the understanding of the evolution of various bands in the presence of OCh and changes to the crystallinity enabling the functionalities that are not available in the single-phase ZrO2.en_US
dc.identifier.doi10.1021/acs.jpcc.5b07904en_US
dc.identifier.issn1932-7447
dc.identifier.urihttp://hdl.handle.net/11693/20748
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jpcc.5b07904en_US
dc.source.titleJournal of Physical Chemistry Cen_US
dc.subjectAtomic layer depositionen_US
dc.subjectBinding energyen_US
dc.subjectChemisorptionen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectNanostructuresen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectX ray diffractionen_US
dc.subjectZirconiaen_US
dc.subjectChemisorbed oxygenen_US
dc.subjectCore shell nano structuresen_US
dc.subjectCore-level spectraen_US
dc.subjectCrystalline structureen_US
dc.subjectCrystallinitiesen_US
dc.subjectElectrospun nanofibersen_US
dc.subjectSpectral positionen_US
dc.subjectTetragonal zirconiaen_US
dc.subjectZirconium alloysen_US
dc.titleAmorphous to tetragonal zirconia anostructures and evolution of valence and core regionsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Amorphous to Tetragonal Zirconia Nanostructures and Evolution of Valence and Core Regions.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format
Description:
Full printable version