Biocompatible electroactive tetra (aniline)-conjugated peptide nanofibers for neural differentiation

Date
2018
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
ACS Applied Materials and Interfaces
Print ISSN
1944-8244
Electronic ISSN
Publisher
American Chemical Society
Volume
10
Issue
1
Pages
308 - 317
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA-conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)