Structural and phase evolution in mechanically alloyed calcium copper titanate dielectrics

dc.citation.epage3312en_US
dc.citation.issueNumber3en_US
dc.citation.spage3307en_US
dc.citation.volumeNumber39en_US
dc.contributor.authorAlizadeh, M.en_US
dc.contributor.authorArdakani H.A.en_US
dc.contributor.authorAmini, R.en_US
dc.contributor.authorGhazanfari, M.R.en_US
dc.contributor.authorGhaffari, M.en_US
dc.date.accessioned2016-02-08T09:39:49Z
dc.date.available2016-02-08T09:39:49Z
dc.date.issued2013en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractNanocrystalline calcium-copper-titanate (CCTO) dielectric powders were prepared by mechanical alloying. Phase transformations and structural evolution of the mechanically activated powders were investigated through the Rietveld refinement of the X-ray diffraction results. The crystallite size, lattice strain, and weight fraction of individual phases were estimated based on crystal structure refinement. Furthermore, the microstructural properties and thermal behavior of the milled powders were investigated by Transmission Electron Microscopy (TEM) and Differential Thermal Analysis (DTA), respectively. It was found that CCTO nanocrystals can be successfully synthesized after the amorphization of the initial crystalline materials. Semi-spherical nano-size particles were developed after sufficient milling time. Formation of an amorphous phase during the milling cycle was confirmed by the presence of the glass transition and crystallization peaks in the thermal analysis profiles. © 2012 Elsevier Ltd and Techna Group S.r.l.en_US
dc.identifier.doi10.1016/j.ceramint.2012.10.019en_US
dc.identifier.issn0272-8842
dc.identifier.urihttp://hdl.handle.net/11693/21024
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ceramint.2012.10.019en_US
dc.source.titleCeramics Internationalen_US
dc.subjectAmorphous phaseen_US
dc.subjectC. Thermal propertiesen_US
dc.subjectDielectricsen_US
dc.subjectMechanical alloyingen_US
dc.subjectAmorphous phaseen_US
dc.subjectCalcium copper titanatesen_US
dc.subjectCrystal structure refinementen_US
dc.subjectDielectric powdersen_US
dc.subjectLattice strainen_US
dc.subjectMechanically alloyeden_US
dc.subjectMicrostructural propertiesen_US
dc.subjectMilled powdersen_US
dc.subjectMilling cyclesen_US
dc.subjectMilling timeen_US
dc.subjectNano-size particlesen_US
dc.subjectNanocrystallinesen_US
dc.subjectPhase evolutionsen_US
dc.subjectStructural evolutionen_US
dc.subjectThermal behaviorsen_US
dc.subjectTransmission electron microscopy temen_US
dc.subjectWeight fractionsen_US
dc.subjectCrystal structureen_US
dc.subjectCrystalline materialsen_US
dc.subjectDifferential thermal analysisen_US
dc.subjectGlass transitionen_US
dc.subjectMechanical alloyingen_US
dc.subjectMilling (machining)en_US
dc.subjectNanocrystalline powdersen_US
dc.subjectPowdersen_US
dc.subjectRietveld refinementen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectX ray diffractionen_US
dc.subjectX ray powder diffractionen_US
dc.subjectDielectric materialsen_US
dc.titleStructural and phase evolution in mechanically alloyed calcium copper titanate dielectricsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Structural and phase evolution in mechanically alloyed calcium copper titanate dielectrics.pdf
Size:
844.49 KB
Format:
Adobe Portable Document Format
Description:
Full printable version