Quantum quench in two dimensions using the variational Baeriswyl wave function

dc.citation.epage115124-6en_US
dc.citation.issueNumber11en_US
dc.citation.spage115124-1en_US
dc.citation.volumeNumber93en_US
dc.contributor.authorDóra, B.en_US
dc.contributor.authorHaque, M.en_US
dc.contributor.authorPollmann, F.en_US
dc.contributor.authorHetényi, B.en_US
dc.date.accessioned2018-04-12T10:44:06Z
dc.date.available2018-04-12T10:44:06Z
dc.date.issued2016en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractBy combining the Baeriswyl wave function with equilibrium and time-dependent variational principles, we develop a nonequilibrium formalism to study quantum quenches for two-dimensional spinless fermions with nearest-neighbor hopping and repulsion. The variational ground-state energy, the charge-density wave (CDW) order parameter, and the short-time dynamics agree convincingly with the results of numerically exact simulations. We find that, depending on the initial and final interaction strength, the quenched system either exhibits oscillatory behavior or relaxes to a time-independent steady state. The time-averaged expectation value of the CDW order parameter rises sharply when crossing from the steady-state regime to the oscillating regime, indicating that the system, being nonintegrable, shows signs of thermalization with an effective temperature above or below the equilibrium critical temperature, respectively.en_US
dc.identifier.doi10.1103/PhysRevB.93.115124en_US
dc.identifier.eissn2469-9969
dc.identifier.issn2469-9950
dc.identifier.urihttp://hdl.handle.net/11693/36554
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.93.115124en_US
dc.source.titlePhysical Review Ben_US
dc.titleQuantum quench in two dimensions using the variational Baeriswyl wave functionen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Quantum_quench_in_two_dimensions_using_the_variational_Baeriswyl_wave_function.pdf
Size:
400.19 KB
Format:
Adobe Portable Document Format
Description:
Full printable version