Active set partitioning scheme for extending the lifetime of large wireless sensor networks

Date
2010
Editor(s)
Advisor
Aykanat, Cevdet
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Wireless Sensor Networks consist of spatially distributed and energy-constrained autonomous devices called sensors to cooperatively monitor physical or environmental conditions such as temperature, sound, vibration, pressure or pollutants at different locations. Because these sensor nodes have limited energy supply, energy efficiency is a critical design issue in wireless sensor networks. Having all the nodes simultaneously work in the active mode, results in an excessive energy consumption and packet collisions because of high node density in the network. In order to minimize energy consumption and extend network life-time, this thesis presents a centralized graph partitioning approach to organize the sensor nodes into a number of active sensor node sets such that each active set maintains the desired level of sensing coverage and forms a connected network to perform sensing and communication tasks successfully. We evaluate our proposed scheme via simulations under different network topologies and parameters in terms of network lifetime and run-time efficiency and observe approximately 50% improvement in the number of obtained active node sets when compared with different active node set selection mechanisms.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)