Nanoantenna couplers for metal-insulator-metal waveguide interconnects

buir.contributor.authorOkyay, Ali Kemal
dc.citation.volumeNumber7757en_US
dc.contributor.authorOnbasli, M.C.en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.coverage.spatialSan Diego, California, United Statesen_US
dc.date.accessioned2016-02-08T12:20:42Z
dc.date.available2016-02-08T12:20:42Z
dc.date.issued2010en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.descriptionConference name: Proceedings of SPIE, Plasmonics: Metallic Nanostructures and Their Optical Properties VIIIen_US
dc.descriptionDate of Conference: 1–5 August 2010en_US
dc.description.abstractState-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times. © 2010 SPIE.en_US
dc.identifier.doi10.1117/12.876177en_US
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/11693/28439
dc.language.isoEnglishen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.876177en_US
dc.source.titleProceedings of SPIEen_US
dc.subjectCoupleren_US
dc.subjectDipoleen_US
dc.subjectMetal-insulator-metalen_US
dc.subjectNanoantennaen_US
dc.subjectPlasmon resonanceen_US
dc.subjectSubwavelengthen_US
dc.subjectWaveguideen_US
dc.subjectCoupleren_US
dc.subjectDipoleen_US
dc.subjectMetal-insulator-metalen_US
dc.subjectNanoantennasen_US
dc.subjectPlasmon resonanceen_US
dc.subjectSub-wavelengthen_US
dc.subjectAntennasen_US
dc.subjectFinite difference time domain methoden_US
dc.subjectIntegrationen_US
dc.subjectMetal insulator boundariesen_US
dc.subjectMetalsen_US
dc.subjectNanostructuresen_US
dc.subjectOptical propertiesen_US
dc.subjectOptical signal processingen_US
dc.subjectOptoelectronic devicesen_US
dc.subjectPlasmonsen_US
dc.subjectSemiconductor insulator boundariesen_US
dc.subjectSignal processingen_US
dc.subjectSurface plasmon resonanceen_US
dc.subjectWaveguidesen_US
dc.subjectMIM devicesen_US
dc.titleNanoantenna couplers for metal-insulator-metal waveguide interconnectsen_US
dc.typeConference Paperen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoantenna couplers for metal-insulator-metal waveguide interconnects.pdf
Size:
716.84 KB
Format:
Adobe Portable Document Format
Description:
Full printable version