A highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sites

buir.contributor.authorSay, Zafer
buir.contributor.authorKocak, Yusuf
buir.contributor.authorErcan, Kerem Emre
buir.contributor.authorJalal, Ahsan
buir.contributor.authorOzensoy, Emrah
buir.contributor.orcidSay, Zafer|0000-0003-2563-9858
buir.contributor.orcidKocak, Yusuf|0000-0003-4511-1321
buir.contributor.orcidErcan, Kerem Emre|0000-0003-4650-7977
buir.contributor.orcidOzensoy, Emrah|0000-0003-4352-3824
dc.citation.volumeNumber636en_US
dc.contributor.authorOzden, M.
dc.contributor.authorSay, Zafer
dc.contributor.authorKocak, Yusuf
dc.contributor.authorErcan, Kerem Emre
dc.contributor.authorJalal, Ahsan
dc.contributor.authorOzensoy, Emrah
dc.contributor.authorAvci, A. K.
dc.date.accessioned2023-02-14T11:50:40Z
dc.date.available2023-02-14T11:50:40Z
dc.date.issued2022-04-25
dc.departmentDepartment of Chemistryen_US
dc.description.abstractGlycerol dry reforming (GDR) was studied on Ru/La2O3, Ru/ZrO2, and Ru/La2O3–ZrO2 catalysts. Impacts of the support on morphological, electronic and surface chemical properties of the catalysts were comprehensively characterized by TEM, in–situ DRIFTS, XPS, ATR–IR and XRD. Initial (5 h) CO2 conversion at 750 °C and CO2–to–glycerol ratio of 1–4 was ordered as Ru/La2O3 < Ru/ZrO2 < Ru/La2O3–ZrO2. During 72 h stability tests, Ru/ZrO2 deactivated by ~33% due to Ru sintering, structural deformation of the monoclinic zirconia support, and strong metal–support interaction. Under identical conditions, CO2 conversion on Ru/La2O3 decreased by 27% mainly due to dehydroxylation/carbonation of lanthana and severe coking. Lanthana–stabilized tetragonal zirconia phase of Ru/La2O3–ZrO2 led to finely dispersed small oxidic Ru clusters which deactivated by 15% after 72 h and demonstrated unusually high catalytic performance that was on par with the significantly more expensive Rh–based catalysts, which are known with their exceptional activity and stability in GDR.en_US
dc.identifier.doi10.1016/j.apcata.2022.118577en_US
dc.identifier.eissn1873-3875
dc.identifier.issn0926-860X
dc.identifier.urihttp://hdl.handle.net/11693/111262
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.apcata.2022.118577en_US
dc.source.titleApplied Catalysis A: Generalen_US
dc.subjectCarbon dioxideen_US
dc.subjectDry reformingen_US
dc.subjectGlycerolen_US
dc.subjectRutheniumen_US
dc.subjectSynthesis gasen_US
dc.titleA highly active and stable Ru catalyst for syngas production via glycerol dry reforming: Unraveling the interplay between support material and the active sitesen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_highly_active_and_stable_Ru_catalyst_for_syngas_production_via_glycerol_dry_reforming_Unraveling_the_interplay_between_support_material_and_the_active_sites.pdf
Size:
6.73 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: