A comprehensive analysis of GaN HEMTs: electro-mechanical behavior, defect generation, and drain LAG reduction with HfO2 layers

Limited Access
This item is unavailable until:
2024-01-21
Date
2023-07
Editor(s)
Advisor
Özbay, Ekmel
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) have rapidly emerged as a transformative technology, owing to the unique properties of the substrate material. They are poised to become a revolutionary advancement in RF amplifier applications, primarily due to their capability to operate at high frequencies and power levels with superior efficiency compared to conventional devices. Despite the rapid progressions, a noticeable gap persists in the literature regarding the relation-ship between mechanical stresses, defect generation, and their subsequent impact on the electrical characteristics of AlGaN/GaN HEMTs. Moreover, current dispersion effects, which are trapping induced reductions in output power, continues to remain a pressing issue. To address these limitations, this study first adopts a multifaceted approach and integrates mechanical simulations and Raman spectroscopy, in order to resolve fine details of stress distributions that a diffraction-limited Raman probe cannot resolve. This enables an extensive modeling of stresses in a typical HEMT structure and helps elucidate the underlying dynamics of defect generation, with the ultimate goal of informing and guiding the development of advanced fabrication techniques. In a second study, an ultrathin blanket dielectric deposition approach was devised to alleviate surface trapping, and consequently, mitigate current dispersion. The proposed streamlined fabrication process yielded a substantial improvement in device performance without compromising the transistor transfer characteristics.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)