Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication

buir.contributor.authorBayındır, Mehmet
dc.citation.epage1213en_US
dc.citation.issueNumber6en_US
dc.citation.spage1202en_US
dc.citation.volumeNumber12en_US
dc.contributor.authorBayındır, Mehmeten_US
dc.contributor.authorAbouraddy, A.F.en_US
dc.contributor.authorShapira O.en_US
dc.contributor.authorViens J.en_US
dc.contributor.authorSaygin-Hinczewski, D.en_US
dc.contributor.authorSorin, F.en_US
dc.contributor.authorArnold, J.en_US
dc.contributor.authorJoannopoulos, J. D.en_US
dc.contributor.authorFink, Y.en_US
dc.date.accessioned2016-02-08T10:17:23Z
dc.date.available2016-02-08T10:17:23Z
dc.date.issued2006en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractA preform-to-flber approach to the fabrication of functional fiber-based devices by thermal drawing in the viscous state is presented. A macroscopic preform rod containing metallic, semiconducting, and insulating constituents in a variety of geometries and close contact produces kilometer-long novel nanostructured fibers and fiber devices. We first review the material selection criteria and then describe metal-semiconductor-metal photosensitive and thermally sensitive fibers. These flexible, lightweight, and low-cost functional fibers may pave the way for new types of fiber sensors, such as thermal sensing fabrics, artificial skin, and large-area optoelectronic screens. Next, the preform-to-fiber approach is used to fabricate spectrally tunable photodetectors that integrate a photosensitive core and a nanostructured photonic crystal structure containing a resonant cavity. An integrated, self-monitoring optical-transmission waveguide is then described that incorporates optical transport and thermal monitoring. This fiber allows one to predict power-transmission failure, which is of paramount importance if high-power optical transmission fines are to be operated safely and reliably in medical, industrial and defense applications. A hybrid electron-photon fiber consisting of a hollow core (for optical transport by means of a photonic bandgap) and metallic wires (for electron transport) is described that may be used for transporting atoms and molecules by radiation pressure. Finally, a solid microstructured fiber fabricated with a highly nonlinear chalcogenide glass enables the generation of supercontinuum light at near-infrared wavelengths.en_US
dc.identifier.doi10.1109/JSTQE.2006.882666en_US
dc.identifier.issn1077-260X
dc.identifier.urihttp://hdl.handle.net/11693/23676
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/JSTQE.2006.882666en_US
dc.source.titleIEEE Journal on Selected Topics in Quantum Electronicsen_US
dc.subjectAmorphous semiconductoren_US
dc.subjectChalcogenide glassen_US
dc.subjectIntegrated fiberen_US
dc.subjectMicrostructured fiberen_US
dc.subjectOptical fiberen_US
dc.subjectPhotonic bandgapen_US
dc.subjectSelf-phase modulationen_US
dc.subjectSemiconducting nanowireen_US
dc.subjectSuper-continuum generationen_US
dc.subjectCrystal structureen_US
dc.subjectInsulating materialsen_US
dc.subjectLight transmissionen_US
dc.subjectOptical fibersen_US
dc.subjectOptical waveguidesen_US
dc.subjectPhotodetectorsen_US
dc.subjectSelf phase modulationen_US
dc.subjectSemiconductor materialsen_US
dc.subjectChalcogenide glassen_US
dc.subjectIntegrated fiberen_US
dc.subjectNanophotonic devicesen_US
dc.subjectPhotonic bandgapen_US
dc.subjectSemiconducting nanowireen_US
dc.subjectSuper continuum generationen_US
dc.subjectThermal monitoringen_US
dc.subjectNanostructured materialsen_US
dc.titleKilometer-long ordered nanophotonic devices by preform-to-fiber fabricationen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication.pdf
Size:
955.05 KB
Format:
Adobe Portable Document Format
Description:
Full printable version