• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Physics
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Mechanosynthesis of polymer-stabilized lead bromide perovskites: insight into the formation and phase conversion of nanoparticles

      Thumbnail
      View / Download
      4.3 Mb
      Author(s)
      Jiang, G.
      Erdem, Onur
      Hübner, R.
      Georgi, M.
      Wei, W.
      Fan, X.
      Wang, J.
      Demir, Hilmi Volkan
      Date
      2021-04
      Source Title
      Nano Research
      Print ISSN
      1998-0124
      Publisher
      Tsinghua University Press
      Volume
      14
      Pages
      1078 - 1086
      Language
      English
      Type
      Article
      Item Usage Stats
      33
      views
      44
      downloads
      Abstract
      The application of polymers to replace oleylamine (OLA) and oleic acid (OA) as ligands for perovskite nanocrystals is an effective strategy to improve their stability and durability especially for the solution-based processing. Herein, we report a mechanosynthesis of lead bromide perovskite nanoparticles (NPs) stabilized by partially hydrolyzed poly(methyl methacrylate) (h-PMMA) and high-molecular-weight highly-branched poly(ethylenimine) (PEI-25K). The as-synthesized NP solutions exhibited green emission centered at 516 nm, possessing a narrow full-width at half-maximum of 17 nm and as high photoluminescence quantum yield (PL QY) as 85%, while showing excellent durability and resistance to polar solvents, e.g., methanol. The colloids of polymer-stabilized NPs were directly processable to form stable and strongly-emitting thin films and solids, making them attractive as gain media. Furthermore, the roles of h-PMMA and PEI-25K in the grinding process were studied in depth. The h-PMMA can form micelles in the grinding solvent of dichloromethane to act as size-regulating templates for the growth of NPs. The PEI-25K with large amounts of amino groups induced significant enrichment of PbBr2 in the reaction mixture, which in turn caused the formation of CsPb2Br5-mPbBr2 and CsPbBr3-Cs4PbBr6-nCsBr NPs. The presence of CsPbBr3-Cs4PbBr6-nCsBr NPs was responsible for the high PL QY, as the Cs4PbBr6 phase with a wide energy bandgap can passivate the surface defects of the CsPbBr3 phase. This work describes a direct and facile mechanosynthesis of polymer-coordinated perovskite NPs and promotes in-depth understanding of the formation and phase conversion for perovskite NPs in the grinding process.
      Keywords
      Lead bromide perovskites
      Mechanosynthesis
      Polymer ligands
      Polymer micelles
      Poly(ethyleneimine)-induced phase conversion
      Permalink
      http://hdl.handle.net/11693/77420
      Published Version (Please cite this version)
      https://doi.org/10.1007/s12274-020-3152-7
      Collections
      • Department of Physics 2550
      • Institute of Materials Science and Nanotechnology (UNAM) 2256
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy