• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Design of nanoscale capacitors based on metallic borophene and insulating boron nitride layers

      Thumbnail
      View / Download
      1.8 Mb
      Author(s)
      Mogulkoc, Y.
      Mogulkoc, A.
      Guler, H. E.
      Durgun, Engin
      Date
      2021-12-13
      Source Title
      Physical Review Materials
      Print ISSN
      2469-9950
      Electronic ISSN
      2475-9953
      Publisher
      American Physical Society
      Volume
      5
      Issue
      124002
      Pages
      124002-1 - 124002-6
      Language
      English
      Type
      Article
      Item Usage Stats
      28
      views
      126
      downloads
      Abstract
      In alignment with the efforts on miniaturizing the components of electronic devices with enhanced performance, we investigate a dielectric nanocapacitor (DNC) based on metallic borophene electrodes separated with insulating hexagonal boron nitride (h-BN) monolayers (n=1–5). The capacitive performance of the proposed DNC as a function of applied electric field (→E) and thickness of the dielectric material is examined by using ab initio methods. The borophene plates and h-BN monolayers are commensurate and coupled only with van der Waals interaction, which constitutes an ideal configuration as a DNC. It is found that a single h-BN layer is not thick enough as a spacer to hinder quantum tunneling effects, and similar to the case with no insulating layer, borophene electrodes are shorted. Being effective from two h-BN layers, the charge separation on borophene plates is attained via →E in the vertical direction. The capacitance of the DNC rapidly saturates at →E≥0.1V/Å and reaches its maximum value of 0.77μF/cm2 for n=2. The capacitance decreases with an increasing number of insulating layers as the distance between electrodes enlarges and shows a similar trend that is expected from the classical Helmholtz model. Our results suggest metallic and lightweight borophene and insulating h-BN monolayers as ideal constituents for the DNC design.
      Keywords
      Capacitance
      Electronic structure
      2-dimensional systems
      Density functional theory
      Permalink
      http://hdl.handle.net/11693/77358
      Published Version (Please cite this version)
      https://doi.org/10.1103/PhysRevMaterials.5.124002
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      • Nanotechnology Research Center (NANOTAM) 1179
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy