• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Evolving text stream classification with a novel neural ensemble architecture

      Thumbnail
      View / Download
      1022.5 Kb
      Author(s)
      Ghahramanian, Pouya
      Advisor
      Can, Fazlı
      Date
      2022-01
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      200
      views
      110
      downloads
      Abstract
      We study on-the-fly classification of evolving text streams in which the relation between the input data target labels changes over time—i.e. “concept drift”. These variations decrease the model’s performance, as predictions become less accurate over-time and they necessitate a more adaptable system. We introduce Adaptive Neural Ensemble Network (AdaNEN ), a novel ensemble-based neural approach, capable of handling concept drift in text streams. With our novel architecture, we address some of the problems neural models face when exploited for online adaptive learning environments. The problem of evolving text stream classification is relatively unexplored and most existing studies address concept drift detection and handling in numerical streams. We hypothesize that the lack of public and large-scale experimental data could be one reason. To this end, we propose a method based on an existing approach for generating evolving text streams by inducing various types of concept drifts to real-world text datasets. We provide an extensive evaluation of our proposed approach using 12 stateof- the-art baselines and eight datasets. Our experimental results show that our proposed method, AdaNEN, consistently outperforms the existing approaches in terms of predictive performance with conservative efficiency.
      Keywords
      Text stream classification
      Concept drift
      Ensemble learning
      Neural networks
      Permalink
      http://hdl.handle.net/11693/76860
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy