• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Deep learning for multi-contrast MRI synthesis

      Thumbnail
      View / Download
      14.2 Mb
      Author(s)
      Yurt, Mahmut
      Advisor
      Çukur, Tolga
      Date
      2021-07
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      320
      views
      465
      downloads
      Abstract
      Magnetic resonance imaging (MRI) possesses the unique versatility to acquire images under a diverse array of distinct tissue contrasts. Multi-contrast images, in turn, better delineate tissues, accumulate diagnostic information, and enhance radiological analyses. Yet, prolonged, costly exams native to multi-contrast pro-tocols often impair the diversity, resulting in missing images from some contrasts. A promising remedy against this limitation arises as image synthesis that recovers missing target contrast images from available source contrast images. Learning-based models demonstrated remarkable success in this source-to-target mapping due to their prowess in solving even the most demanding inverse problems. Main-stream approaches proposed for synthetic MRI were typically subjected to a model training to perform either one-to-one or many-to-one mapping. One-to-one models manifest elevated sensitivity to detailed features of the given source, but they perform suboptimally when source-target images are poorly linked. Meanwhile, many-to-one counterparts pool information from multiple sources, yet this comes at the expense of losing detailed features uniquely present in cer-tain sources. Furthermore, regardless of the mapping, they both innately demand large training sets of high-quality source and target images Fourier-reconstructed from Nyquist-sampled acquisitions. However, time and cost considerations put significant challenges in compiling such datasets. To address these limitations, here we first propose a novel multi-stream model that task-adaptively fuses unique and shared image features from a hybrid of multiple one-to-one streams and a single many-to-one stream. We then introduce a novel semi-supervised learning framework based on selective tensor loss functions to learn high-quality image synthesis directly from a training dataset of undersampled acquisitions, bypass-ing the undesirable data requirements of deep learning. Demonstrations on brain MRI images from healthy subjects and glioma patients indicate the superiority of the proposed approaches against state-of-the-art baselines.
      Keywords
      MRI synthesis
      Deep learning
      Multi-stream
      Semi-supervised
      Permalink
      http://hdl.handle.net/11693/76446
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 654
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy