Show simple item record

dc.contributor.authorUlusoy-Ghobadi, Türkan Gamzeen_US
dc.contributor.authorGhobadi, Amiren_US
dc.contributor.authorSoydan, Mahmut Canen_US
dc.contributor.authorVishlaghi, M. B.en_US
dc.contributor.authorKaya, S.en_US
dc.contributor.authorKaradaş, Ferdien_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2021-03-01T13:09:37Z
dc.date.available2021-03-01T13:09:37Z
dc.date.issued2020en_US
dc.identifier.issn1864-5631
dc.identifier.urihttp://hdl.handle.net/11693/75685
dc.description.abstractA facial and large‐scale compatible fabrication route is established, affording a high‐performance heterogeneous plasmonic‐based photoelectrode for water oxidation that incorporates a CoFe–Prussian blue analog (PBA) structure as the water oxidation catalytic center. For this purpose, an angled deposition of gold (Au) was used to selectively coat the tips of the bismuth vanadate (BiVO4) nanostructures, yielding Au‐capped BiVO4 (Au‐BiVO4). The formation of multiple size/dimension Au capping islands provides strong light–matter interactions at nanoscale dimensions. These plasmonic particles not only enhance light absorption in the bulk BiVO4 (through the excitation of Fabry–Perot (FP) modes) but also contribute to photocurrent generation through the injection of sub‐band‐gap hot electrons. To substantiate the activity of the photoanodes, the interfacial electron dynamics are significantly improved by using a PBA water oxidation catalyst (WOC) resulting in an Au‐BiVO4/PBA assembly. At 1.23 V (vs. RHE), the photocurrent value for a bare BiVO4 photoanode was obtained as 190 μA cm−2, whereas it was boosted to 295 μA cm−2 and 1800 μA cm−2 for Au‐BiVO4 and Au‐BiVO4/PBA, respectively. Our results suggest that this simple and facial synthetic approach paves the way for plasmonic‐based solar water splitting, in which a variety of common metals and semiconductors can be employed in conjunction with catalyst designs.en_US
dc.language.isoEnglishen_US
dc.source.titleChemSusChemen_US
dc.relation.isversionofhttps://doi.org/10.1002/cssc.202000294en_US
dc.subjectCyanide chemistryen_US
dc.subjectHot electronsen_US
dc.subjectPhotoelectrochemical water splittingen_US
dc.subjectPlasmonicsen_US
dc.subjectPrussian blueen_US
dc.titleStrong light–matter interactions in Au plasmonic nanoantennas coupled with Prussian blue catalyst on BiVO4 for photoelectrochemical water splittingen_US
dc.typeArticleen_US
dc.citation.spage2577en_US
dc.citation.epage2588en_US
dc.citation.volumeNumber13en_US
dc.citation.issueNumber10en_US
dc.identifier.doi10.1002/cssc.202000294en_US
dc.publisherWiley-VCH Verlagen_US
dc.contributor.bilkentauthorUlusoy-Ghobadi, Türkan Gamzeen_US
dc.contributor.bilkentauthorGhobadi, Amiren_US
dc.contributor.bilkentauthorSoydan, Mahmut Canen_US
dc.contributor.bilkentauthorKaradaş, Ferdien_US
dc.contributor.bilkentauthorÖzbay, Ekmelen_US
dc.embargo.release2021-05-22en_US
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record