• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Neuroscience
      • Graduate Program in Neuroscience - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Graduate Program in Neuroscience
      • Graduate Program in Neuroscience - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Spatial attention and paracontrast masking

      Thumbnail
      View / Download
      9.2 Mb
      Author
      Konyalı, Afife
      Advisor
      Kafalıgönül, Hacı Hulusi
      Date
      2021-01
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      33
      views
      4
      downloads
      Abstract
      Visual masking is a powerful methodological tool to investigate the dynamics of sensory processing associated with object visibility and identity. Previous paracontrast masking studies revealed three distinct components that have been proposed to reflect processes at different stages and to be mediated by the distinct interactions within and/or across pathways [1, 2]. The brief and prolonged inhibition components are mainly observed within short and long stimulus onset asynchronies (SOAs) and they have been interpreted as the reflectance of early lateral inhibition and late recurrent inhibition within the parvo-dominated P-pathway. On the other hand, the facilitation typically becomes dominant at intermediate SOAs and the excitatory modulations of sub-cortical structures on the parvo-dominated pathway have been proposed as the underlying mechanism. An important question to address is how attention modulates these components and associated processes. In this thesis, two experiments were designed to understand the effects of attention on the components involved in paracontrast masking. In the first experiment, using an experimental design [3] combined with a contour discrimination task, the set-size was varied to manipulate attention in the spatial domain. The paracontrast masking functions indicated robust brief and prolonged inhibitions. Importantly, the set-size differentially altered these components. An increase in set-size (i.e., attentional load in the visual field) decreased brief inhibition while increasing the prolonged inhibition. In a second experiment, a brightness/contrast matching task was used to understand the effects of attention on the facilitation. Although the paracontrast masking functions showed facilitation at intermediate SOAs and the component was higher for increased set-size condition, these observations were not supported by statistical tests. Taken together, these findings revealed differential effects of spatial attention on the inhibitory mechanisms operating at distinct stages of P-pathway. In the last part of the thesis, an elaborated experimental design was also proposed to further understand and reveal possible effects of attention on the facilitatory mechanism. Future neuroimaging studies will be informative to understand the neural correlates of attention and paracontrast interaction, and hence the role of attention in object visibility.
      Keywords
      Attention
      Masking
      Visibility
      Temporal dynamics
      Inhibition
      Facilitation
      Permalink
      http://hdl.handle.net/11693/54888
      Collections
      • Graduate Program in Neuroscience - Master's degree 37
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy