• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Text mining analysis of translation, social communication and literary writing for Turkish

      Thumbnail
      Embargo Lift Date: 2021-07-11
      View / Download
      8.0 Mb
      Author(s)
      Çalışkan, Sevil
      Advisor
      Can, Fazlı
      Date
      2020-12
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      191
      views
      92
      downloads
      Abstract
      Text mining is an important research area considering the increase in text generation and the need for analysis. Text mining in Turkish is still not a wellinvested research area, compared to the other languages. In this thesis, we analyze different types of Turkish text from different points of views, having an overall review on text mining in Turkish at the end. First, we analyze the translation quality of a Turkish novel, My Names is Red novel, to English, French, and Spanish with the features generated for each chapter. With the proposed method, translation loyalties to the original text can be quantified without any parallel comparisons. Then, we analyze the Turkish spoken texts of 98 people in different age groups in terms of gender and age attributes of the speakers. We also analyze the difference between written and spoken texts in Turkish. Results show that it is possible to predict the attributes of the speaker from the spoken text and written and spoken texts are significantly different in terms of stylometric measures. Later on, we make an assessment on cross-lingual transferring performances of multilingual networks from English to Turkish. We see that transferring is possible; however zero-shot cross-lingual transferring still has its way to be competitive with monolingual networks for Turkish. Lastly, we conduct a time-based stylometric analysis of Ahmet Hamdi Tanpınar’s works. We see that Ahmet Hamdi Tanpınar shows some differences compared to his contemporaries.
      Keywords
      Text mining
      Stylometric analysis
      Spoken text analysis
      Discourse analysis
      Cross-lingual learning
      Transfer learning
      Multi-lingual data
      Permalink
      http://hdl.handle.net/11693/54882
      Collections
      • Dept. of Computer Engineering - Master's degree 550
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy