• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Molecular Biology and Genetics
      • Dept. of Molecular Biology and Genetics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Investigation of PI3K functional compensation VIA activated tyrosine kinases

      Thumbnail
      Embargo Lift Date: 2021-07-07
      View / Download
      3.4 Mb
      Author
      Demir, Melike
      Advisor
      Çizmecioğlu, Onur
      Date
      2021-01
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      35
      views
      1
      downloads
      Abstract
      Protein tyrosine kinases and serine-threonine kinases have crucial functions in cell signaling, differentiation, motility, and proliferation. PI3K is the most deregulated pathway in human cancers and an essential regulator of cellular proliferation. PI3K pathway is activated via oncogenic Ras/receptor tyrosine kinases (RTKs), PTEN loss, or activating mutations in PI3Ks. Moreover, PI3K is one of the most promising pathways for targeted therapies. Thus, many serine-threonine or tyrosine kinases contribute to drug resistance elicited by PI3K inhibition. In order to identify an individual tyrosine kinase that contributes to PI3K functional compensation, the activated tyrosine kinase library was screened and found out that ZAP70 can compensate growth upon PI3K abrogation. This study suggests a mechanism of activated ZAP70 mediated partial resistance in MEFs lines. Moreover, we demonstrated the role of activated tyrosine kinase, ZAP70, in cancer cells as a tumorinitiating factor. Activated ZAP70 is able to enhance the growth ability of untransformed cells. Also in these cells, activated ZAP70 can develop partial resistance to PI3K inhibition. This resistance occurs via activated downstream targets of tyrosine kinase signaling such as STAT3/MAPK axis. Furthermore, we showed that activated ZAP70 has a high transformation capability associated with the formation of malignant phenotype in untransformed cells. Overall, ZAP70 may be a potent driver of proliferation and transformation in untransformed cells as well as in cancer cells.
      Keywords
      PI3K
      Tyrosine kinases
      Drug resistance
      Cell signaling
      Permalink
      http://hdl.handle.net/11693/54871
      Collections
      • Dept. of Molecular Biology and Genetics - Master's degree 135
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy