Multitask learning of gene risk for autism spectrum disorder and intellectual disability

Date

2020-10

Editor(s)

Advisor

Çiçek, Abdullah Ercüment

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
54
downloads

Series

Abstract

Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) are comorbid neurodevelopmental disorders with complex genetic architectures. Despite largescale sequencing studies only a fraction of the risk genes were identified for both. Here, we present a novel network-based gene risk prioritization algorithm named DeepND that performs cross-disorder analysis to improve prediction power by exploiting the comorbidity of ASD and ID via multitask learning. Our model leverages information from gene co-expression networks that model human brain development using graph convolutional neural networks and learns which spatiotemporal neurodevelopmental windows are important for disorder etiologies. We show that our approach substantially improves the state-of-the-art prediction power. We observe that both disorders are enriched in transcription regulators. Despite tight regulatory links in between ASD risk genes, such is lacking across ASD and ID risk genes or within ID risk genes. Finally, we investigate frequent ASD and ID associated copy number variation regions and confident false findings to suggest several novel susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type