• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Atomic force microscopy experiments on atomically thin materials

      Thumbnail
      Embargo Lift Date: 2021-01-12
      View / Download
      8.4 Mb
      Author(s)
      Sheraz, Ali
      Advisor
      Kasırga, Talip Serkan
      Date
      2020-06
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      463
      views
      298
      downloads
      Abstract
      In 2004, successful isolation of graphene attracted immense attention of scientists because of atomic scale thickness and exotic functionalities. Regardless of graphene’s thickness and extraordinary properties only reason that limits the usage of graphene in electronics is no band gap. But there is a way to open band gap of graphene by introducing defects or applying electric field but defects introduction can affect its functionality. So, world moved towards transition metal dichalcogenides (TMDCs), new analogs of graphene with thickness dependent band gap option are promising nominee for potential applications in modern physics and electronics. Besides electronic properties, TMDCs depict excellent mechanical characteristics (in plane elastic modulus, breaking strength/strain and pretension) compared to conventional volumetric counterparts. The objective of this study is to investigate work function and mechanical properties of atomically thin materials using Kelvin probe force microscopy (KPFM) and Nanoindentation modes of Asylum Atomic Force Microscopy (AFM) respectively. Firstly, KPFM experiments were performed on CVD grown Vanadium Sesquioxide V2O3 to map surface potential variation and calculated work function value 4.91 eV. This will help in understanding band alignment, contact resistance and appropriate Schottky barrier height (SBH) by choosing metal contacts with closer work function to V2O3. Secondly by using AFM based nanoindentation we first time reported elastic features of metallic TMDCs: 2H-TaS2, 3R-NbS2, 1T-TaTe2 and 1T-NbTe2 with various thickness values suspended over circular holes. Comprehensive measurement was done on 2H-TaS2 and found thickness independent Young’s modulus for 2H-TaS2 is 114 ± 14 GPa, breaking strength 12.6 ± 2.6 GPa corresponds to nominal strain of 11% and ultimate strain of 0.22. Same mechanical features were investigated for other three materials and they also manifested extreme elasticity and high strain values compare to other 2D materials reported so far except graphene. This mechanical analysis of metallic materials will contribute in future flexible nano technological devices (for instance piezo electronics), wearable electronics, resistive coatings in electronic devices, nanoelectromechanical systems (NEMS) and strain sensors.
      Keywords
      Vanadium sesquioxide
      Transition metal dichalcogenides
      Kelvin probe force microscopy
      Nanoindentation
      Permalink
      http://hdl.handle.net/11693/53926
      Collections
      • Dept. of Physics - Master's degree 170
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy