Effects of Bronsted and Lewis bases on formic acid dehydrogenation selectivity of Pd(111) single crystal model catalyst
Author(s)
Advisor
Özensoy, EmrahDate
2020-06Publisher
Bilkent University
Language
English
Type
ThesisItem Usage Stats
228
views
views
106
downloads
downloads
Abstract
Formic acid (FA) is an environmentally friendly hydrogen-based energy vector that can be
obtained from renewable biomass feedstocks. However, catalytic decomposition of FA
involves two different competing chemical pathways called dehydration and dehydrogenation.
Thus, molecular level studies focusing on the selective catalytic FA dehydrogenation are
essential for establishing structure-reactivity relationships which can be used in order to
increase the catalytic dehydrogenation selectivity. In the current work, effects of Bronsted and
Lewis bases on catalytic FA dehydrogenation selectivity were studied under ultra-high vacuum
(UHV) conditions on an atomically well-defined Pd(111) single crystal model catalyst surface
by using temperature programmed desorption/temperature programmed reaction spectroscopy
(TPD/TPRS), X-Ray photoelectron spectroscopy (XPS) and low energy electron diffraction
(LEED) techniques. Doubly-deuterated FA (DCOOD) was used as the FA source, while
ammonia and manganese oxide were chosen as the model Bronsted and Lewis bases.
Adsorption and subsequent surface decomposition reaction of DCOOD on Pd(111) showed
that model catalyst was not totally selective towards dehydrogenation. Functionalizing the
Pd(111) surface with ammonia suppressed the FA dehydration and boosted the dehydrogenation pathway, where positive influence of ammonia on FA dehydrogenation
selectivity decayed when ammonia coverage was greater than 1 ML. A boost in hydrogen
generation was observed in the catalytic FA dehydrogenation on manganese oxide-deposited
Pd(111) surface (at sub-monolayer manganese oxide regime) as compared to that of a clean
Pd(111) model catalyst. It was found out that manganese oxide can enhance FA
dehydrogenation by acting as a promoter and/or catalytically contributing to the reaction
depending on the oxidation state composition.