• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Aysel Sabuncu Brain Research Center (BAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Aysel Sabuncu Brain Research Center (BAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Visual crowding illustrates the inadequacy of local vs. global and feedforward vs. feedback distinctions in modeling visual perception

      Thumbnail
      View / Download
      262.7 Kb
      Author
      Clarke, Aaron
      Herzog, M.
      Francis, G.
      Date
      2014
      Source Title
      Frontiers in Psychology
      Print ISSN
      1664-1078
      Publisher
      Frontiers
      Volume
      5
      Pages
      1193
      Language
      English
      Type
      Article
      Item Usage Stats
      56
      views
      37
      downloads
      Abstract
      Experimentaliststendtoclassifymodelsofvisualperceptionasbeingeitherlocalorglobal,andinvolvingeitherfeedforwardorfeedbackprocessing.Wearguethatthesedistinctionsarenotashelpfulastheymightappear,andweillustratetheseissuesbyanalyzingmodelsofvisualcrowdingasanexample.Recentstudieshavearguedthatcrowdingcannotbeexplainedbypurelylocalprocessing,butthatinstead,globalfactorssuchasperceptualgroupingarecrucial.Theoriesofperceptualgrouping,inturn,ofteninvokefeedbackconnectionsasawaytoaccountfortheirglobalproperties.Weexaminedthreetypesofcrowdingmodelsthatarerepresentativeofglobalprocessingmodels,andtwoofwhichemployfeedbackprocessing:amodelbasedonFourierfiltering,afeedbackneuralnetwork,andaspecificfeedbackneuralarchitecturethatexplicitlymodelsperceptualgrouping.Simulationsdemonstratethatcrucialempiricalfindingsarenotaccountedforbyanyofthemodels.Weconcludethatempiricalinvestigationsthatrejectalocalorfeedforwardarchitectureofferalmostnoconstraintsformodelconstruction,asthereareanuncountablenumberofglobalandfeedbacksystems.Weproposethattheidentificationofasystemasbeinglocalorglobalandfeedforwardorfeedbackislessimportantthantheidentificationofasystem’scomputationaldetails.Onlythelatterinformationcanprovideconstraintsonmodeldevelopmentandpromotequantitativeexplanationsofcomplexphenomena.
      Keywords
      Feed-forward
      Hierarchicalmodels
      Feedback
      Scene processing
      Object recognition
      Permalink
      http://hdl.handle.net/11693/53575
      Published Version (Please cite this version)
      https://doi.org/10.3389/fpsyg.2014.01193
      Collections
      • Aysel Sabuncu Brain Research Center (BAM) 207
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy