Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications
Date
2007-10Source Title
Nano Letters
Print ISSN
1530-6984
Electronic ISSN
1530-6992
Publisher
American Chemical Society
Volume
7
Issue
11
Pages
3343 - 3348
Language
English
Type
ArticleItem Usage Stats
270
views
views
347
downloads
downloads
Abstract
We developed means to form multilayer superstructures of large collections of single-walled carbon nanotubes (SWNTs) configured in horizontally aligned arrays, random networks, and complex geometries of arrays and networks on a wide range of substrates. The approach involves guided growth of SWNTs on crystalline and amorphous substrates followed by sequential, multiple step transfer of the resulting collections of tubes to target substrates, such as high-k thin dielectrics on silicon wafers, transparent plates of glass, cylindrical tubes and other curved surfaces, and thin, flexible sheets of plastic. Electrical measurements on dense, bilayer superstructures, including crossbars, random networks, and aligned arrays on networks of SWNTs reveal some important characteristics of representative systems. These and other layouts of SWNTs might find applications not only in electronics but also in areas such as optoelectronics, sensors, nanomechanical systems, and microfluidics.