Show simple item record

dc.contributor.authorTopuz, Fuaten_US
dc.contributor.authorUyar, Tameren_US
dc.date.accessioned2020-02-17T12:35:10Z
dc.date.available2020-02-17T12:35:10Z
dc.date.issued2019-09
dc.identifier.urihttp://hdl.handle.net/11693/53396
dc.description.abstractWe here show a rational approach for the fabrication of a flexible, insoluble catalytic electrospun nanoweb of cross-linked cyclodextrin (CD) for the reduction of nitroaromatics. CD nanofibers were produced by electrospinning an aqueous HP-β-CD solution containing a multifunctional cross-linker (i.e., 1,2,3,4-butanetetracarboxylic acid, BTCA) and were subsequently cross-linked by heat treatment, which led to an insoluble electrospun poly-CD nanoweb. The poly-CD nanoweb was decorated with Pd nanoparticles (Pd-NPs) by atomic layer deposition (ALD) technique over 20 cycles to give rise to a catalytic electrospun nanoweb (i.e., Pd@poly-CD). The formation of the Pd-NPs on the poly-CD nanofiber surface was clearly evidenced by TEM and STEM imaging, which displayed the homogeneously distributed Pd-NPs with a mean size of 4.34 nm. ICP-MS analysis revealed that the Pd content on the Pd@poly-CD nanoweb was 0.039 mg per mg of nanoweb. The catalytic performance of the Pd@poly-CD nanoweb was tested for the reduction of a nitroaromatic compound (i.e., 4-nitrophenol (4-NP)), and high catalytic performance of the Pd@poly-CD nanoweb was observed with a corresponding TOF value of 0.0316 min−1. XPS was used to explore the oxidation state of Pd atoms before and after the catalytic reduction of 4-NP, and no significant change was observed after catalytic reactions. In brief, the Pd@poly-CD nanoweb having handy, flexible, structural stability and reusability can be effectively used in environmental applications as a heterogeneous nanocatalyst for the reduction of toxic nitroaromatics.en_US
dc.language.isoEnglishen_US
dc.source.titleNanoscale Advancesen_US
dc.relation.isversionofhttps://dx.doi.org/10.1039/c9na00368aen_US
dc.titleAtomic layer deposition of palladium nanoparticles on a functional electrospun poly-cyclodextrin nanoweb as a flexible and reusable heterogeneous nanocatalyst for the reduction of nitroaromatic compoundsen_US
dc.typeArticleen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.citation.spage4082en_US
dc.citation.epage4089en_US
dc.citation.volumeNumber1en_US
dc.citation.issueNumber10en_US
dc.identifier.doi10.1039/c9na00368aen_US
dc.publisherRoyal Society of Chemistryen_US
dc.contributor.bilkentauthorTopuz, Fuat
dc.contributor.bilkentauthorUyar, Tamer
dc.identifier.eissn2516-0230
buir.contributor.orcidUyar, Tamer|0000-0002-3989-4481en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record