• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Electrical and Electronics Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Chemically addressed switching measurements in graphene electrode memristive devices using in situ XPS

      Thumbnail
      View / Download
      1.6 Mb
      Author(s)
      Kocabaş, Coşkun
      Köymen, Itır
      Aydoğan Göktürk, Pınar
      Süzer, Şefik
      Date
      2019-08
      Source Title
      Faraday Discussions
      Print ISSN
      1359-6640
      Publisher
      Royal Society of Chemistry
      Volume
      213
      Pages
      231 - 244
      Language
      English
      Type
      Article
      Item Usage Stats
      178
      views
      247
      downloads
      Abstract
      The memristor has been the topic of heated research activity since the Pt/TiO2/TiOx/Pt structure was reported by Hewlett-Packard Labs. The characteristics of memristors such as the pinched hysteresis loops and time and input signal-dependent memristance are due to the drift of positively charged oxygen vacancies in the TiOx layer. While different modes of switching behaviour have been characterized, observing the switching as it happens with in situ measurements using X-ray photoelectron spectroscopy (XPS) can allow a better understanding of the device operation. The setup used in this work enables the application of voltage signals of different frequencies and amplitudes and observing the hysteresis seen in the I–V plane through chemical addressing. The measurements were conducted on Pt/TiO2/TiOx/graphene structures. The single layer graphene, utilized as a top electrode, effectively acts as a transparent electrode in that the layer beneath it can be observed to a depth of ∼10 nm in XPS. This allows for the observation of the changes in the binding energies of C 1s, Ti 2p and O 1s. By comparing the variation in the binding energy of Ti 2p to that of C 1s, and observing how the variation changes for different excitation signals (at different frequency and amplitudes), it is possible to inspect the effect of the oxygen vacancy drift. We employed a variety of input signals with varying frequency and amplitudes in order to test the memristive devices thoroughly: sine wave, triangular wave and DC bias. Graphene has been attracting attention due to its intriguing optoelectronic properties. This study utilizes graphene as a transparent top electrode for in situ measurements in XPS to observe chemically-addressed memristive hysteresis while an excitation signal is being applied to the device.
      Permalink
      http://hdl.handle.net/11693/53367
      Published Version (Please cite this version)
      https://dx.doi.org/10.1039/c8fd00129d
      Collections
      • Department of Chemistry 707
      • Department of Electrical and Electronics Engineering 4011
      • Department of Physics 2550
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy