Relaxation-based color magnetic particle imaging for viscosity mapping

Date

2019

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Applied Physics Letters

Print ISSN

0003-6951

Electronic ISSN

Publisher

American Institute of Physics

Volume

115

Issue

15

Pages

152403-5 - 152403-1

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Magnetic particle imaging (MPI) uses superparamagnetic iron oxide (SPIO) nanoparticles as biomedical imaging tracers. The potential applications of MPI have recently been broadened by the introduction of “color” MPI techniques that can distinguish different nanoparticles and/or environments, e.g., by exploiting the relaxation behavior of SPIOs. One of the important applications of color MPI techniques is viscosity mapping. In this work, we show relaxation-based color MPI experiments that can distinguish the biologically relevant viscosity range of up to 5 mPa s. To find the optimal drive field parameters for viscosity, we compare color MPI results at three different frequencies. We show that frequencies around 10 kHz are well-suited for viscosity mapping using the multicore cluster Nanomag-MIP nanoparticles, providing a one-to-one mapping between the estimated relaxation time constant and viscosity.

Course

Other identifiers

Book Title

Citation