• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Institute of Materials Science and Nanotechnology (UNAM)
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Atomic layer deposition of Pd nanoparticles on N-Doped electrospun carbon nanofibers: optimization of ORR activity of Pd-Based nanocatalysts by tuning their nanoparticle size and loading

      Thumbnail
      Embargo Lift Date: 2020-12-04
      View / Download
      992.0 Kb
      Author(s)
      Khalily, Mohammad Aref
      Patil, Bhushan
      Yılmaz, Eda
      Uyar, Tamer
      Date
      2019
      Source Title
      ChemNanoMat
      Print ISSN
      2199-692X
      Publisher
      Wiley-VCHVerlagGmbH& Co. KGaA,Weinheim
      Volume
      5
      Issue
      12
      Pages
      1540 - 1546
      Language
      English
      Type
      Article
      Item Usage Stats
      157
      views
      175
      downloads
      Abstract
      Optimization of size, loading and chemical composition of catalytic nanoparticles is a crucial step to achieve cost‐effective and efficient (electro) catalysts. This report elaborates optimization of palladium (Pd) nanoparticle size and loading on the electrospun based N‐doped carbon nanofibers (nCNF) towards oxygen reduction reaction (ORR) for the energy devices like fuel cell, metal air batteries. Electrospinning was utilized to produce one‐dimensional (1D) polyacrylonitrile nanofibers followed by a two‐step carbonization process obtaining well‐defined conductive nCNF having diameters in the range of 200–350 nm. As‐synthesized nCNF was decorated with discrete Pd nanoparticles ranging from 2.6±0.4 nm to 4.7±0.5 nm via thermal atomic layer deposition (ALD) technique. We found that nCNF deposited Pd nanoparticles having 3.9±0.6 nm size (Pd20/nCNF) showed the best ORR activity with the smallest Tafel slope of 58 mV dec−1 along with four electrons involved in the ORR. In addition, high value at half wave potential (E1/2=806 mV vs. RHE) and exchange current densities (i0=6.998 mA cm−2) at Pd20/nCNF makes it efficient catalyst among other Pd decorated nCNF. Moreover, we found that electrocatalyst with lower loading/density of Pd nanoparticles showed enhanced ORR activity.
      Keywords
      Nanocatalysis
      Atomic layer deposition
      Electrospining
      Electrocatalysis
      Oxygen reduction reaction
      Permalink
      http://hdl.handle.net/11693/53221
      Published Version (Please cite this version)
      https://doi.org/10.1002/cnma.201900483
      Collections
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy