Ultra-lightweight Chemical Vapor Deposition grown multilayered graphene coatings on paper separator as interlayer in lithium-sulfur batteries

Available
The embargo period has ended, and this item is now available.

Date

2019

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
0
views
37
downloads

Citation Stats

Series

Abstract

Lithium-Sulfur (Li-S) batteries are known for their high energy density and cost-effectiveness. However, the Li-S chemistry is a challenging topic due to the shuttle effect and the use of highly reactive lithium metal anode. To solve these issues, ultra-lightweight multilayered graphene coated paper separator is proposed as an interlayer. The interlayer is firstly coated on nickel foil by Chemical Vapor Deposition (CVD) method followed by transferring to the paper by fishing process. By employing this unique technique, a very light (~8 mg/cm2 ) graphene coating layer is obtained which does not further imply lowering the entire energy density of the cell. As a whole, the cell with graphene coated paper exhibits 610 mAh/g discharge capacity at C/5 after 100 cycles, while the cell without interlayer exhibits much poorer performance. The improved performance is mostly associated with the interaction between graphene and polysulfide species which is proven by X-Ray Photoelectron Spectroscopy measurement as well as the excellent electronic conductivity of graphene layer which behaves as a secondary current collector resulting the cell resistance decrease.

Source Title

Journal of Alloys and Compounds

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English