• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Ph.D. / Sc.D.
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A theoretical study of strained monolayer transition metal dichalcogenides based on simple band structures

      Thumbnail
      View / Download
      2.3 Mb
      Author(s)
      Aas, Shahnaz
      Advisor
      Bulutay, Ceyhun
      Date
      2019-10
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      1,178
      views
      665
      downloads
      Abstract
      This doctoral thesis deals with optoelectronic and geometric band properties of two-dimensional transition metal dichalcogenides (TMDs) under applied strain. First, we analyze various types of strain for the K valley optical characteristics of a freestanding monolayer MoS2, MoSe2, WS2 and WSe2 within a two-band k p method. By this simple bandstructure combined with excitons at a variational level, we reproduce wide range of available strained-sample photoluminescence data. According to this model strain affects optoelectronic properties. Shear strain only causes a rigid wavevector shift of the valley without any alternation in the bandgap or the effective masses. Also, for exible substrates under applying stress the presence of Poisson's effect or the lack of it are investigated individually for the reported measurements. Furthermore, we show that circular polarization selectivity decreases/increases by tensile/compressive strain for energies above the direct transition onset. TMDs in addition to their different other attractive properties have rendered the geometric band effects directly accessible. The tailoring and enhancement of these features by strain is an ongoing endeavor. In the second part of this thesis, we consider spinless two and three band, and spinful four band bandstructure techniques appropriate to evaluate circular dichroism, Berry curvature and orbital magnetic moment of strained TMDs. First, we establish a new k p parameter set for MoS2, MoSe2, WS2 and WSe2 based on recently released ab initio and experimental band properties. For most of these TMDs its validity range extend from K valley edge to several hundreds of millielectron volts for both valence and conduction band. We introduce strain to an available three band tight-binding Hamiltonian to extend this over a larger part of the Brillouin zone. Based on these we report that by applying a 2:5% biaxial tensile strain, both the Berry curvature and the orbital magnetic moment can be doubled compared to their unstrained values. These simple bandstructure tools can be suitable for the device modeling of the geometric band effects in strained monolayer TMDs.
      Keywords
      k - p Hamiltonian
      Excitons
      Transition metal dichalcogenides
      Strain
      Photoluminescence
      Circular dichroism
      Berry curvature
      Orbital magnetic momen
      Permalink
      http://hdl.handle.net/11693/52731
      Collections
      • Dept. of Physics - Ph.D. / Sc.D. 76
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy