• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Mechanical Engineering
      • Dept. of Mechanical Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Microfluidic synthesis of polyhedral oligomeric silsesquioxane (POSS) based organic-inorganic hybrid microparticles

      Thumbnail
      Embargo Lift Date: 2020-04-11
      View / Download
      38.8 Mb
      Author(s)
      Çalışkan, Umutcan
      Advisor
      Çetin, Barbaros
      Date
      2019-10
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      677
      views
      20
      downloads
      Abstract
      Utilizing micro uidic systems inevitably changes tools used in chemistry due to advantages such as handling differential volume, controlled reaction environment, enhanced mixing performance, less time required to complete reaction. Hence micro uidic reactors become more popular among microparticle synthesis tools. This research work presents synthesis of organosilica nano-cage structures, namely Polyhedral oligomeric silsesquioxane (POSS) particles, based on organicinorganic hybrid microparticles by utilizing dispersion and emulsion polymerization methods. Firstly, poly(M-POSS) microparticles are synthesized via dispersion polymerization method by using continuous ow microreactors, one of which is operated on a hot plate and the other one has temperature controlled dual zone with embedded electrodes. Synthesized microparticles in microreactors are characterized in terms of morphology, thermal behavior and surface chemical structure. Effects of different parameters such as monomer, initiator and stabilizer amount are presented. Secondly, in a temperature controlled continuous ow micro uidic reactor with embedded thin film electrode, epoxy functional- POSS microparticles have been synthesized via emulsion polymerization method. Heater for the micro uidic reactor is designed by COMSOL Multiphysics and manufactured in cleanroom to achieve homogeneous temperature distribution. Effects of ow rate, temperature and concentration of monomers are presented. In addition, same micro uidic reactor without electrodes immersed in oil bath and polymerization is observed and results are compared with the electrode integrated reactor.
      Keywords
      Microfluidics
      Organic-inorganic hybrid microparticles
      Microparticle synthesis
      Polyhedral oligomeric silsesquioxane (POSS)
      Permalink
      http://hdl.handle.net/11693/52680
      Collections
      • Dept. of Mechanical Engineering - Master's degree 66
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      LoginRegister

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy