• About
  • Policies
  • What is openaccess
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Electrical and Electronics Engineering
      • Dept. of Electrical and Electronics Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      An analog neuromorphic classifier chip for ECG arrhythmia detection

      Thumbnail
      View / Download
      16.1 Mb
      Author
      Güngen, Murat Alp
      Advisor
      Atalar, Abdullah
      Date
      2019-10
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      677
      views
      132
      downloads
      Abstract
      Following Moore's Law, the increase in the availability of more processing power alongside the development of algorithms that can use this power, electrocardiogram (ECG) systems are now becoming a part of our daily lives. The analytical detection of irregularities within the ECG scan, arrhythmias, is tricky due to the variations in the signals that di er from people to people due to physiological reasons. In order to overcome this problem, a two stage machine-learning based time-domain algorithm is first developed and tested on MatLab using datasets from the MIT - BIH Arrhythmia Database. The algorithm begins with the preprocessing stage where seven features are extracted from the input ECG waveform. These features are then moved onto the second classification stage where a perceptron classifies the features as arrhythmic or normal. The algorithm was then converted into an analog CMOS circuit using the XFAB XC06M3 fabrication process on Cadence Virtuoso. Most of the operations in the preprocessing stage were completed using operational transconductance amplifiers (OTAs). For the classifier, the circuit uses analog oating gate metal oxide semiconductor transistors (FGMOS) to store the weights of the perceptron and a winner-take-all current comparator for the activation function. Simulation results show that the circuit works as intended with a power consumption of 290 W.
      Keywords
      Neuromorphics
      ECG
      Arrhythmia
      Arrhythmia detection
      Permalink
      http://hdl.handle.net/11693/52522
      Collections
      • Dept. of Electrical and Electronics Engineering - Master's degree 594
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartments

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 1771
      Copyright © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy