• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Physics
      • Dept. of Physics - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      A novel method for thermal conductivity measurement of two dimensional materials

      Thumbnail
      Embargo Lift Date: 2020-03-12
      View / Download
      16.8 Mb
      Author(s)
      Çakıroğlu, Onur
      Advisor
      Kasırga, Talip Serkan
      Date
      2019-09
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      317
      views
      194
      downloads
      Abstract
      Thermal conductivity is a quantity which governs the heat transfer in a material. After increasing importance of efficiency in power generation systems and cooling mechanisms in micro-structures, many measurement methods have been developed to explore the thermal conductivity in micro and nano-sized materials. However, complexity in experimental setups, difficulties in the fabrication of devices required for measurements, and lacking exact solutions to thermal equations limit the usability of the methods to a class of materials. It is particularly challenging to study atomically thin metallic materials. To tackle this challenge, we have developed a new thermal conductivity measurement method based on the temperature dependent electrical resistance change and analyzed our method analytically and numerically by finite element method. We applied our method to 2H-TaS2 and found thermal conductivity as 9.55 1.27 W/m.K. Thermal conductivity value of TaS2, a metallic transition metal dichalcogenide was measured for the first time. This is supported by Wiedemann-Franz law and thermal conductivity of similar materials such as 2H-TaSe2 and 1T-TaS2. The method can be applied to semiconducting thin materials as well and is superior to other methods in various ways.
      Keywords
      Thermal conductivity
      2D materials
      Temperature dependent resistance change
      Finite element method
      Heat equation
      Permalink
      http://hdl.handle.net/11693/52438
      Collections
      • Dept. of Physics - Master's degree 170
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy