• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Diverse SNP selection for epistasis test prioritization

      Thumbnail
      View / Download
      720.9 Kb
      Author(s)
      Çaylak, Gizem
      Advisor
      Çiçek, A. Ercüment
      Date
      2019-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      216
      views
      122
      downloads
      Abstract
      Genome-wide association studies explain a fraction of the underlying heritability of genetic diseases. Epistatic interactions between two or more loci help closing the gap and identifying those complex interactions provides a promising road to a better understanding of complex traits. Unfortunately, sheer number of loci combinations to consider and hypotheses to test prohibit the process both computationally and statistically. This is true even if only pairs of loci are considered. Epistasis prioritization algorithms have proven useful for reducing the computational burden and limiting the number of tests to perform. While current methods aim at avoiding linkage disequilibrium and covering the case cohort, none aims at diversifying the topological layout of the selected SNPs which can detect complementary variants. In this thesis, a two stage pipeline to prioritize epistasis test is proposed. In the first step, a submodular set function is optimized to select a diverse set of SNPs that span the underlying genome to (i) avoid linkage disequilibrium and (ii) pair SNPs that relate to complementary function. In the second step, selected SNPs are used as seeds to a fast epistasis detection algorithm. The algorithm is compared with the state-of-the-art method LinDen on three datasets retrieved from Wellcome Trust Case Control Consortium: type two diabates, hypertension and bipolar disorder. The results show that the pipeline drastically reduces the number of tests to perform while the number of statistically significant epistatic pairs discovered increases.
      Keywords
      GWAS
      Epistasis test prioritization
      SNP selection
      Permalink
      http://hdl.handle.net/11693/52333
      Collections
      • Dept. of Computer Engineering - Master's degree 566
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy