• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      •   BUIR Home
      • University Library
      • Bilkent Theses
      • Theses - Department of Computer Engineering
      • Dept. of Computer Engineering - Master's degree
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Boosting fully convolutional networks for gland instance segmentation in histopathological images

      Thumbnail
      Embargo Lift Date: 2020-02-08
      View / Download
      25.9 Mb
      Author(s)
      Güneşli, Gözde Nur
      Advisor
      Demir, Çiğdem Gündüz
      Date
      2019-08
      Publisher
      Bilkent University
      Language
      English
      Type
      Thesis
      Item Usage Stats
      227
      views
      89
      downloads
      Abstract
      In the current literature, fully convolutional neural networks (FCNs) are the most preferred architectures for dense prediction tasks, including gland segmentation. However, a signi cant challenge is to adequately train these networks to correctly predict pixels that are hard-to-learn. Without additional strategies developed for this purpose, networks tend to learn poor generalizations of the dataset since the loss functions of the networks during training may be dominated by the most common and easy-to-learn pixels in the dataset. A typical example of this is the border separation problem in the gland instance segmentation task. Glands can be very close to each other, and since the border regions contain relatively few pixels, it is more di cult to learn these regions and separate gland instances. As this separation is essential for the gland instance segmentation task, this situation arises major drawbacks on the results. To address this border separation problem, it has been proposed to increase the given attention to border pixels during network training either by increasing the relative loss contribution of these pixels or by adding border detection as an additional task to the architecture. Although these techniques may help better separate gland borders, there may exist other types of hard-to-learn pixels (and thus, other mistake types), mostly related to noise and artifacts in the images. Yet, explicitly adjusting the appropriate attention to train the networks against every type of mistake is not feasible. Motivated by this, as a more e ective solution, this thesis proposes an iterative attention learning model based on adaptive boosting. The proposed AttentionBoost model is a multi-stage dense segmentation network trained directly on image data without making any prior assumption. During the end-to-end training of this network, each stage adjusts the importance of each pixel-wise prediction for each image depending on the errors of the previous stages. This way, each stage learns the task with di erent attention forcing the stage to learn the mistakes of the earlier stages. With experiments on the gland instance segmentation task, we demonstrate that our model achieves better segmentation results than the approaches in the literature.
      Keywords
      Deep learning
      Attention learning
      Adaptive boosting
      Gland segmentation
      Medical image segmentation
      Permalink
      http://hdl.handle.net/11693/52332
      Collections
      • Dept. of Computer Engineering - Master's degree 559
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy