Show simple item record

dc.contributor.authorAnisimov, Vladimir V.en_US
dc.contributor.editorJanssen, J.en_US
dc.contributor.editorLimnios, N.en_US
dc.date.accessioned2019-04-30T09:04:02Z
dc.date.available2019-04-30T09:04:02Z
dc.date.issued1999en_US
dc.identifier.isbn9781461332886
dc.identifier.urihttp://hdl.handle.net/11693/51032
dc.descriptionChapter 5en_US
dc.description.abstractStochastic processes with semi-Markov switches (or in semi-Markov environment) and general Switching processes are considered. In case of asymptotically ergodic environment functional Averaging Principle and Diffusion Approximation types theorems for trajectory of the process are proved. In case of asymptotically consolidated environment a convergence to a solution of a differential or stochastic differential equation with Markov switches is studied. Applications to the analysis of random movements with fast semi-Markov switches and semi-Markov queueing systems in case of heavy traffic conditions are considered.en_US
dc.language.isoEnglishen_US
dc.relation.ispartofSemi-Markov models and applicationsen_US
dc.relation.isversionofhttps://doi.org/10.1007/978-1-4613-3288-6_5en_US
dc.relation.isversionofhttps://doi.org/10.1007/978-1-4613-3288-6en_US
dc.subjectSemi-Markov processen_US
dc.subjectSwitching processen_US
dc.subjectAveraging principleen_US
dc.subjectDiffusion approximationen_US
dc.subjectConsolidation of statesen_US
dc.subjectQueueing modelsen_US
dc.subjectRandom walksen_US
dc.titleDiffusion approximation for processes with Semi-Markov switches and applications in queueing modelsen_US
dc.typeBook Chapteren_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.citation.spage77en_US
dc.citation.epage101en_US
dc.identifier.doi10.1007/978-1-4613-3288-6_5en_US
dc.identifier.doi10.1007/978-1-4613-3288-6en_US
dc.publisherSpringer, Bostonen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record