Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and p-cymene: Enhanced water solubility and thermal stability

Available
The embargo period has ended, and this item is now available.

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
50
downloads

Citation Stats

Series

Abstract

The electrospinning of self-standing nanofibrous webs from inclusion complexes (IC) of cineole and p-cymene with two modified cyclodextrins (HPβCD, HPγCD) was achieved without using carrier polymeric matrix. Although they are highly volatile, certain amount of cineole and p-cymene was protected in cyclodextrin inclusion complexes nanofibers (CD-IC-NF). That is, 68.4%, 78.1%, 54.5% and 44.0% (w/w) of active agent were preserved in cineole/HPβCD-IC-NF, cineole/HPγCD-IC-NF, p-cymene/HPβCD-IC-NF and p-cymene/HPγCD-IC-NF, respectively. Remarkable, high thermal stability for cineole (~150 °C - 270 °C) and p-cymene (~150 °C - 275 °C) was achieved for CD-IC-NF samples due to CD-IC formation. The water solubility of cineole and p-cymene was significantly improved by inclusion complexation where CD-IC-NF samples become readily dissolved in water. In brief, essential oils and flavours such as cineole and p-cymene could be applicable in food and oral care applications owing to their fast-dissolving behaviour along with high water solubility, enhanced thermal stability and free-standing feature of CD-IC-NF webs.

Source Title

International Journal of Food Science and Technology

Publisher

Blackwell Publishing

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English