Show simple item record

dc.contributor.authorHayfavi, A.en_US
dc.contributor.authorKotz, S.en_US
dc.contributor.authorOstrovskii, I. V.en_US
dc.date.accessioned2019-02-15T10:51:43Z
dc.date.available2019-02-15T10:51:43Z
dc.date.issued1994en_US
dc.identifier.issn1631-073X
dc.identifier.urihttp://hdl.handle.net/11693/49570
dc.description.abstractThe analytic and asymptotic properties of the probability density Jin (:r:) introduced in 1953 by Ju. V. Linnik and defined by the characteristic function 1/(1 + It I"), 0 < n < 2, are studied. Expansions of Jin (:r:) into convergent and asymptotic series in terms of log I :r: I , I x I k n, I ,r I k (k = 0, 1, 2, ... ) are obtained. It turns out that the analytic structure of Pc, (:r:) depends substantially on the arithmetical nature of the parameter n.en_US
dc.language.isoEnglishen_US
dc.language.isoFrench
dc.source.titleComptes Rendus de l'Académie des Sciences - Series I - Mathematicsen_US
dc.titleAnalytic and asymptotic properties of Linnik's probability densitiesen_US
dc.title.alternativeLes proprietes analytiques et asymptotiques des densites de probabilites de Linniken_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage985en_US
dc.citation.epage990en_US
dc.citation.volumeNumber319en_US
dc.publisherElsevieren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record