Show simple item record

dc.contributor.authorKaptanoğlu, H. T.en_US
dc.contributor.authorÜreyen, A. E.en_US
dc.date.accessioned2019-02-12T11:18:02Z
dc.date.available2019-02-12T11:18:02Z
dc.date.issued2008en_US
dc.identifier.isbn978-0-8218-4150-1
dc.identifier.urihttp://hdl.handle.net/11693/49316
dc.description.abstractWe consider two-parameter Besov spaces of holomorphic functions on the unit ball of CN: We obtain various exclusions between Besov spaces of di®erent parameters using gap series. We estimate the growth near the boundary and the growth of Taylor coe±cients of functions in these spaces. We ¯nd the unique function with maximum value at each point of the ball in each Besov space. We base our proofs on Bergman projections and imbeddings between Lebesgue classes and Besov spaces. Special cases apply to the Hardy space H2, the Arveson space, the Dirichlet space, and the Bloch space.en_US
dc.language.isoEnglishen_US
dc.source.titleContemporary Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/conm/455en_US
dc.subjectBesoven_US
dc.subjectBergmanen_US
dc.subjectBlochen_US
dc.subjectHardyen_US
dc.subjectArvesonen_US
dc.subjectDirichlet spaceen_US
dc.subjectReproducing kernel Hilbert spaceen_US
dc.subjectRadial derivativeen_US
dc.subjectBergman projectionen_US
dc.subjectBoundary growthen_US
dc.subjectExtremal point evaluationen_US
dc.subjectTaylor coefficient.en_US
dc.titleAnalytic properties of Besov spaces via Bergman projectionsen_US
dc.typeBook Chapteren_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage169en_US
dc.citation.epage182en_US
dc.citation.volumeNumber455en_US
dc.publisherAmerican Mathematical Societyen_US
dc.identifier.eisbn978-0-8218-8134-7


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record