• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Engineering
      • Department of Computer Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      GOOWE: geometrically optimum and online-weighted ensemble classifier for evolving data streams

      Thumbnail
      View / Download
      1.2 Mb
      Author(s)
      Bonab, H. R.
      Can, Fazlı
      Date
      2018-01-25
      Source Title
      ACM Transactions on Knowledge Discovery from Data
      Print ISSN
      1556-4681
      Electronic ISSN
      1556-472X
      Publisher
      Association for Computing Machinery
      Volume
      12
      Issue
      2
      Pages
      25 - 33
      Language
      English
      Type
      Article
      Item Usage Stats
      195
      views
      298
      downloads
      Abstract
      Designing adaptive classifiers for an evolving data stream is a challenging task due to the data size and its dynamically changing nature. Combining individual classifiers in an online setting, the ensemble approach, is a well-known solution. It is possible that a subset of classifiers in the ensemble outperforms others in a time-varying fashion. However, optimum weight assignment for component classifiers is a problem which is not yet fully addressed in online evolving environments. We propose a novel data stream ensemble classifier, called Geometrically Optimum and Online-Weighted Ensemble (GOOWE), which assigns optimum weights to the component classifiers using a sliding window containing the most recent data instances. We map vote scores of individual classifiers and true class labels into a spatial environment. Based on the Euclidean distance between vote scores and ideal-points, and using the linear least squares (LSQ) solution, we present a novel, dynamic, and online weighting approach. While LSQ is used for batch mode ensemble classifiers, it is the first time that we adapt and use it for online environments by providing a spatial modeling of online ensembles. In order to show the robustness of the proposed algorithm, we use real-world datasets and synthetic data generators using the MOA libraries. First, we analyze the impact of our weighting system on prediction accuracy through two scenarios. Second, we compare GOOWE with 8 state-of-the-art ensemble classifiers in a comprehensive experimental environment. Our experiments show that GOOWE provides improved reactions to different types of concept drift compared to our baselines. The statistical tests indicate a significant improvement in accuracy, with conservative time and memory requirements.
      Keywords
      Ensemble classifier
      Concept drift
      Evolving data stream
      Dynamic weighting
      Geometry of voting
      Least squares
      Spatial modeling for online ensembles
      Permalink
      http://hdl.handle.net/11693/49298
      Published Version (Please cite this version)
      https://doi.org/10.1145/3139240
      Collections
      • Department of Computer Engineering 1561
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy