• About
  • Policies
  • What is open access
  • Library
  • Contact
Advanced search
      View Item 
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      •   BUIR Home
      • Scholarly Publications
      • Faculty of Science
      • Department of Chemistry
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Catalytic properties of vanadium diselenide: a comprehensive study on ıts electrocatalytic performance in alkaline, neutral, and acidic media

      Thumbnail
      View / Download
      7.1 Mb
      Author(s)
      Ghobadi, T. G. U.
      Patil, B.
      Karadas, F.
      Okyay, Ali Kemal
      Yilmaz, E.
      Date
      2017
      Source Title
      ACS Omega
      Print ISSN
      2470-1343
      Publisher
      American Chemical Society
      Volume
      2
      Issue
      11
      Pages
      8319 - 8329
      Language
      English
      Type
      Article
      Item Usage Stats
      190
      views
      202
      downloads
      Abstract
      Here, we report the synthesis of vanadium diselenide (VSe2) three-dimensional nanoparticles (NPs) and two-dimensional (2D) nanosheets (NSs) utilizing nanosecond pulsed laser ablation technique followed by liquid-phase exfoliation. Furthermore, a systematic study has been conducted on the effect of NP and NS morphologies of VSe2 in their catalytic activities toward oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) under alkaline, neutral, and acidic conditions. Research on VSe2 clearly demonstrates that these morphologies do not have a significant difference for ORR and OER; however, a drastic effect of morphology was observed for HER. The ORR activity of both NSs and NPs involves ∼2.85 numbers of electrons with the Tafel slope of 120 mV/dec in alkaline and neutral pH. In alkaline solution, NPs are proved to be an efficient catalyst for OER with an onset potential 1.5 V; however, for HER, NSs have a better onset potential of −0.25 V. Moreover, the obtained NPs have also better catalytic activity with a 400 mV anodic shift in the onset potential compared to NSs. These results provide a reference point for the future application of VSe2 in energy storage and conversion devices and mass production of other 2D materials.
      Permalink
      http://hdl.handle.net/11693/48884
      Published Version (Please cite this version)
      http://dx.doi.org/10.1021/acsomega.7b01226
      Collections
      • Department of Chemistry 707
      • Department of Electrical and Electronics Engineering 4011
      • Institute of Materials Science and Nanotechnology (UNAM) 2258
      • Nanotechnology Research Center (NANOTAM) 1179
      Show full item record

      Browse

      All of BUIRCommunities & CollectionsTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCoursesThis CollectionTitlesAuthorsAdvisorsBy Issue DateKeywordsTypeDepartmentsCourses

      My Account

      Login

      Statistics

      View Usage StatisticsView Google Analytics Statistics

      Bilkent University

      If you have trouble accessing this page and need to request an alternate format, contact the site administrator. Phone: (312) 290 2976
      © Bilkent University - Library IT

      Contact Us | Send Feedback | Off-Campus Access | Admin | Privacy