Reversible band-gap engineering in carbon nanotubes by radial deformation
Date
2002-03Source Title
Physical Review B - Condensed Matter and Materials Physics
Print ISSN
1098-0121
Electronic ISSN
1550-235X
Publisher
American Physical Society
Volume
65
Issue
15
Pages
155410-1 - 155410-7
Language
English
Type
ArticleItem Usage Stats
171
views
views
154
downloads
downloads
Abstract
We present a systematic analysis of the effect of radial deformation on the atomic and electronic structure of zigzag and armchair single wall carbon nanotubes using the first-principle plane wave method. The nanotubes were deformed by applying a radial strain, which distorts the circular cross section to an elliptical one. The atomic structure of the nanotubes under this strain are fully optimized, and the electronic structure is calculated self-consistently to determine the response of individual bands to the radial deformation. The band gap of the insulating tube is closed and eventually an insulator-metal transition sets in by the radial strain which is in the elastic range. Using this property a multiple quantum well structure with tunable and reversible electronic structure is formed on an individual nanotube and its band lineup is determined from first principles. The elastic energy due to the radial deformation and elastic constants are calculated and compared with classical theories.