Show simple item record

dc.contributor.authorKurtulmaz, Y.en_US
dc.date.accessioned2019-01-25T11:18:22Z
dc.date.available2019-01-25T11:18:22Z
dc.date.issued2016-01en_US
dc.identifier.issn1018-6301
dc.identifier.urihttp://hdl.handle.net/11693/48369
dc.description.abstractAn element a in a ring R is very clean in case there exists an idempotent e 2 R such that ae = ea and either a 􀀀 e or a + e is invertible. An element a in a ring R is very J-clean provided that there exists an idempotent e 2 R such that ae = ea and either a􀀀e 2 J(R) or a + e 2 J(R). Let R be a local ring, and let s 2 C(R). We prove that A 2 Ks(R) is very clean if and only if A 2 U(Ks(R)); I A 2 U(Ks(R)) or A 2 Ks(R) is very J-clean.en_US
dc.language.isoEnglishen_US
dc.source.titleBulletin of the Iranian Mathematical Societyen_US
dc.subjectLocal ringen_US
dc.subjectVery clean ringen_US
dc.subjectVery J-clean ringen_US
dc.titleVery cleanness of generalized matricesen_US
dc.typeArticleen_US
dc.departmentDepartment of Mathematicsen_US
dc.citation.spage1457en_US
dc.citation.epage1465en_US
dc.citation.volumeNumber43en_US
dc.citation.issueNumber5en_US
dc.publisherSpringeren_US
dc.identifier.eissn1735-8515


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record